In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. ...In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. The constructed auxiliary nodes for Q-QUICK/UQ-QUICK are composed of two neighboring nodes plus the next upwind node, the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces. 2D unsteady advection-diffusion equation of pollut-ants is conducted for their verifications on unstructured grids. The numerical results show that Q-QUICK and UQ-QUICK have similar computational accuracy to the central difference scheme and similar numerical stability to upwind difference scheme after applying the deferred correction method. In addition, their corre-sponding CPU times are approximately equivalent to those of traditional difference schemes and their abili-ties for adapting high grid deformation are robust.展开更多
In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the pr...In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.展开更多
文摘In this paper, two modified QUICK schemes, namely Q-QUICK and UQ-QUICK, for improving the preci-sion of convective flux approximation are verified in advection-diffusion equation of pollutants on unstruc-tured grids. The constructed auxiliary nodes for Q-QUICK/UQ-QUICK are composed of two neighboring nodes plus the next upwind node, the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces. 2D unsteady advection-diffusion equation of pollut-ants is conducted for their verifications on unstructured grids. The numerical results show that Q-QUICK and UQ-QUICK have similar computational accuracy to the central difference scheme and similar numerical stability to upwind difference scheme after applying the deferred correction method. In addition, their corre-sponding CPU times are approximately equivalent to those of traditional difference schemes and their abili-ties for adapting high grid deformation are robust.
基金the National Public Research Institutes for Basic Research and Development Operating Expenses Special Project (Nos.CKSF2010014/SL,YWF0905,CKSF2010011 and CKSF2012008/SL)the National Basic Research Program (973) of China(No.2007CB714106)
文摘In the framework of finite volume method(FVM),two modified schemes of quadratic upstream interpolation for convective kinematics(QUICK),namely quasi-QUICK(Q-QUICK) and normal quasi-QUICK(NQ-QUICK),for improving the precision of convective flux approximation are verified in 3D unsteady advectiondiffusion equation of pollutants on unstructured grids.The constructed auxiliary nodes for Q-QUICK or NQQUICK are composed of two neighboring nodes plus the next upwind node;the later node is generated from intersection of the line of current neighboring nodes and their corresponding interfaces.The numerical results show that Q-QUICK and NQ-QUICK overwhelm central differencing scheme(CDS) in computational accuracy and behave similar numerical stability to upwind difference scheme(UDS),hybrid differencing scheme(HDS) and power difference scheme(PDS) after applying the deferred correction method.Their corresponding CPU time is approximately equivalent to that of traditional difference schemes.In addition,their abilities for adapting high grid deformation are robust.It is so promising to apply the suggested schemes to simulate pollutant transportation on arbitrary 3D natural boundary in the hydraulic or environmental engineering.