The signless Laplacian matrix of a graph G is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are called Q-eigenvalues of G. A Q-eigenvalue of a graph G is called a Q-main...The signless Laplacian matrix of a graph G is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are called Q-eigenvalues of G. A Q-eigenvalue of a graph G is called a Q-main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this work, all trees, unicyclic graphs and bicyclic graphs with exactly two Q-main eigenvalues are determined.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11261059 and 10961023)Scientific Research and Innovation Foundation of Xinjiang Medical University(Grant No.XJC201237)
文摘The signless Laplacian matrix of a graph G is defined to be the sum of its adjacency matrix and degree diagonal matrix, and its eigenvalues are called Q-eigenvalues of G. A Q-eigenvalue of a graph G is called a Q-main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this work, all trees, unicyclic graphs and bicyclic graphs with exactly two Q-main eigenvalues are determined.