Background: Previously described methods for removal of tattoos are chemical, mechanical, surgical, termal and laser assited methods. Invention of the Q-switch mode, advanced the laser method, to be one of the most ef...Background: Previously described methods for removal of tattoos are chemical, mechanical, surgical, termal and laser assited methods. Invention of the Q-switch mode, advanced the laser method, to be one of the most effective methods of tattoo removal. Objective: Comparing the tattoo removal and rate of lymphatic elimination of 3 different wavelengths of Q-switched Nd-YAG laser (532nm, 1064nm, combination 532 + 1064). Methods: In this study we examined lymphatic elimination and the effect of 532 nm, 1064 nm, and the combination (532 + 1064 nm) wavelength of laser pulse for the possible lymphatic cleansing mechanism of black pigmented tattoos. This study was performed on 18 New-Zealand rabbits, black pigmented tattoos were engraved on the back and the four extremities of the animals. 532 nm wavelength of Q switched Nd: YAG laser beam was applied on the left upper and bilateral lower extremities of the rabbits. During this period, excisional skin biopsies and lymph node biopsies were performed on days 7, 14 and 21. Results: Day 21 lymph node biopsies revealed mixed type of reactive hyperplasia and intracellular pigments were markedly seen in the laser treatment group and no intracellular tattoo pigment was seen in the control group. Conclusion: The findingd of this study indicate that lymphatic elimination may be one of the significant mechanisms of tattoo removal and the application of different wavelengths of Q-switched Nd-YAG laser do not show statistically significant differences in tattoo removal.展开更多
Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designati...Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at...A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.展开更多
Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency o...Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.展开更多
A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved....A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.展开更多
Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations,...Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.展开更多
The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in...The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30ns and the peak power of 1.75kW, at the incident pump power of 7.75W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7kHz and 680MHz, respectively.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incid...An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.展开更多
AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge par...AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge pars plana vitrectomy due to vitreoretinal disorders were enrolled, 15 of them underwent a Q-switched Nd:YAG laser capsulotomy 7 d before vitrectomy due to posterior capsule opacification(PCO)(Nd:YAG laser group) while the remaining 21 patients were not laser treated before vitrectomy(no Nd:YAG laser group). Samples of the aqueous and vitreous humors were collected during vitrectomy from all patients for the assessment of oxidative parameters which were compared between the Nd:YAG laser group and no Nd:YAG laser group. Thiobarbituric acid reactive substances(TBARS), a product of membrane lipid peroxidation, nitrite levels, the antioxidative activities of SOD and catalase, the 4-HNE-protein conjugate formation, indicating structural modifications in proteins due to lipoperoxidation, were assessed in aqueous and vitreous samples. RESULTS: In the human vitreous humor TBARS levels are significantly higher in the Nd:YAG laser group compared to the no Nd:YAG laser group and importantly, there is a significant correlation between the TBARS levels and the total energy of Nd:YAG laser used during capsulotomy.Moreover the anti-oxidative activities of SOD and catalase were significantly decreased by Nd:YAG laser treatment, both in aqueous and vitreous humors. In accordance with the TBARS data and anti-oxidative enzyme activities, significantly higher levels of proteins were conjugated with the lipoperoxidation product 4-HNE in the aqueous and vitreous humors in the Nd:YAG laser-treated group in comparison to no Nd:YAG laser group. CONCLUSION: These data, clearly suggest that any change that Q-switched Nd:YAG photo disruption may cause in the aqueous and vitreous compartments, resulting in a higher level of oxidative damage might be of considerable clinical significance particularly by accelerating the aging of the anterior and posterior segments of the eye and by worsening the intraocular pressure, the uveal, the retinal(especially macular) pathologies.展开更多
Lasers have been widely used for tattoo removal,but the limited light penetration depth calused by high skin scattering property restricts the therapeutic outcome of deep tattoo.Skin optical clearing method,by introdu...Lasers have been widely used for tattoo removal,but the limited light penetration depth calused by high skin scattering property restricts the therapeutic outcome of deep tattoo.Skin optical clearing method,by introducing optical clearing agent(OCA)into skin,has shown some im-provement in the effect of laser tattoo removal.In this study,the enhanced laser tattoo removal has been quantitatively assessed.OCA was applied to the skin of tattoo animal model and Q switched Nd:YAG laser(1064 nm)irradiation was used to remove the tattoo.The skin evaluation instrument(Mexameter probe,MPA580)was applied to measure the content of tattoo pigment before and after laser treatment,and then the clearance rate of pigment was calculated.Further,Monte Carlo(MC)method was utilized to simulate the efecet of skin optical clearing on light transmission in tattoo skin model.By comparing the pigment change of tattoo areas respectively treated with OCA plus laser and single laser,it was found that pigment clearance of the former tattoo area was increased by 1.5-fold.Further,the MC simulation verifed that the reduced light scattering in skin could increase the effective dose of lumninous fux reaching to the deep tattoo regions.It can be concluded from both experiment and theoretical simulations that skin optical clearing technique could improve the outcome of laser tattoo re moval,which should be beneficial for clinical laser tattoo removal and other laser pigment elimination.展开更多
文摘Background: Previously described methods for removal of tattoos are chemical, mechanical, surgical, termal and laser assited methods. Invention of the Q-switch mode, advanced the laser method, to be one of the most effective methods of tattoo removal. Objective: Comparing the tattoo removal and rate of lymphatic elimination of 3 different wavelengths of Q-switched Nd-YAG laser (532nm, 1064nm, combination 532 + 1064). Methods: In this study we examined lymphatic elimination and the effect of 532 nm, 1064 nm, and the combination (532 + 1064 nm) wavelength of laser pulse for the possible lymphatic cleansing mechanism of black pigmented tattoos. This study was performed on 18 New-Zealand rabbits, black pigmented tattoos were engraved on the back and the four extremities of the animals. 532 nm wavelength of Q switched Nd: YAG laser beam was applied on the left upper and bilateral lower extremities of the rabbits. During this period, excisional skin biopsies and lymph node biopsies were performed on days 7, 14 and 21. Results: Day 21 lymph node biopsies revealed mixed type of reactive hyperplasia and intracellular pigments were markedly seen in the laser treatment group and no intracellular tattoo pigment was seen in the control group. Conclusion: The findingd of this study indicate that lymphatic elimination may be one of the significant mechanisms of tattoo removal and the application of different wavelengths of Q-switched Nd-YAG laser do not show statistically significant differences in tattoo removal.
文摘Diode end-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency for laser range finding and warning receiver applications as well as day and night military laser designation systems. In this paper we presents theoretical calculations using Advanced Dynamics Professional LASCAD software and experimental studies for a high power pigtailed fiber diode laser module of 8 W operating at 808 nm with a specially designed high efficiency cooling system, end pumped high-efficiency Nd:YVO4 laser of 3 × 3 × 10 mm rod and overall cavity length of 44 mm. To the best of our knowledge a self Q-switching effects was generated in Nd:YVO4 laser by changing the cavity dimensions and the position of the intracavity KTP crystal at certain regime of operation for the first time, in which the cavity length is reduced to be 30 mm and the distance between Nd:YVO4 rod and KTP crystal is only 1mm. Self Q-switched laser pulse at 532 nm with high peak power of 96 W, pulse width of 88 ns at FWHM and repetition rate of 400 kHz was achieved. Experimental studies of a passive Q-switched Nd:YVO4 laser using Cr:YAG crystal with three different transmissions of 30%, 40% and 70% were investigated. Passive Q-switched laser pulse at 1064 nm and narrow line width of less than 1.5 nm with highest peak power of nearly 18 kW, short pulse width of less than 4 ns at FWHM and higher repetition rate of 45 kHz using Cr:YAG with transmission of 30% was achieved for the first time.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028the National Natural Science Foundation of China under Grant No 61475086
文摘A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.
基金Supported by the Foundation of Shandong Province under Grant No J13LN28the National Natural Science Foundation of China under Grant No 11304184
文摘Performance of an LD-end-pumped passively Q-switched Nd: YA G/Cr4+ : YA G microchip laser operating at 1123 nm is studied. A maximum average output power of 517row with an optical-to-optical conversion efficiency of 12.6% and a slope efficiency of 25.8% is obtained under a pump power of 4.1 W. A minimum pulse width of 1.1 ns with a pulse repetition rate of 20.2kHz is obtained, and the corresponding pulse energy and peak power are 25.6μJ and 23.3kW, respectively. To our knowledge, the 23.3kW peak power is the highest among 1123nm lasers. Additionally, based on the 1123 nm laser, with LBO as the frequency doubler, a 288-mW green-yellow laser at 561 nm is successfully achieved.
基金Supported by the Foundation of the State Key Laboratory of Crystal Material of Shandong University under Grant No KF1101the Foundation of Shandong University under Grant No 1170072613176+2 种基金the National Natural Science Foundation of China under Grant Nos 11004122 and 11204160the Special Grade of China Postdoctoral Science Foundation under Grant No 201104627the Independent Innovation Foundation of Shandong University under Grant No 2011GN058
文摘A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.
文摘Numerical simulation of diode-pumped Q-switched Nd:YAG laser leading to the generation of eye-safe signal in singly resonant Intracavity Optical Parametric Oscillator (IOPO) is presented. Starting from rate equations, the time dependent laser equations have been solved numerically, whereas the space-dependent OPO equations analytically. Our results show that 1.4 J diode laser (810 nm) pulse with 200 msec width, delivers 30 mJ Nd:YAG laser (1064 nm) pulse with 5 n-second width. This Nd:YAG laser further generates 9 mJ eye safe signal (1570 nm) pulse with 2.5 n-second width.
文摘The passively Q-switched and mode-locked(QML) characteristics in a diode-pumped Nd∶GdVO4 laser with Cr4+∶YAG saturable absorbers have been demonstrated. A maximum average output power of 710mW has been obtained in the QML laser. The maximum energy of a single Q-switched pulse is 52.5μJ, with the corresponding pulse width of 30ns and the peak power of 1.75kW, at the incident pump power of 7.75W. The repetition rates of the Q-switched envelope and the mode-locked laser pulse are 16.7kHz and 680MHz, respectively.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金Project supported by Tianjin City High School Science&Technology Fund Planning Project(Grant No.20140703)
文摘An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.
基金Supported by Public Universitary Funds(NUZR_autof_17_01)of University of Torinothe Italian Ministry for Research MIUR(No.2010C2LKKJ-007+1 种基金No.20154JRJPP-005)the Ph D and Post-doc Program of the University of Torino
文摘AIM: To evaluate whether the Q-switched Nd:YAG laser treatment applied in routine capsulotomy elicits oxidative stress in aqueous and vitreous humors. METHODS: Thirty-six patients who had to undergo a 25 gauge pars plana vitrectomy due to vitreoretinal disorders were enrolled, 15 of them underwent a Q-switched Nd:YAG laser capsulotomy 7 d before vitrectomy due to posterior capsule opacification(PCO)(Nd:YAG laser group) while the remaining 21 patients were not laser treated before vitrectomy(no Nd:YAG laser group). Samples of the aqueous and vitreous humors were collected during vitrectomy from all patients for the assessment of oxidative parameters which were compared between the Nd:YAG laser group and no Nd:YAG laser group. Thiobarbituric acid reactive substances(TBARS), a product of membrane lipid peroxidation, nitrite levels, the antioxidative activities of SOD and catalase, the 4-HNE-protein conjugate formation, indicating structural modifications in proteins due to lipoperoxidation, were assessed in aqueous and vitreous samples. RESULTS: In the human vitreous humor TBARS levels are significantly higher in the Nd:YAG laser group compared to the no Nd:YAG laser group and importantly, there is a significant correlation between the TBARS levels and the total energy of Nd:YAG laser used during capsulotomy.Moreover the anti-oxidative activities of SOD and catalase were significantly decreased by Nd:YAG laser treatment, both in aqueous and vitreous humors. In accordance with the TBARS data and anti-oxidative enzyme activities, significantly higher levels of proteins were conjugated with the lipoperoxidation product 4-HNE in the aqueous and vitreous humors in the Nd:YAG laser-treated group in comparison to no Nd:YAG laser group. CONCLUSION: These data, clearly suggest that any change that Q-switched Nd:YAG photo disruption may cause in the aqueous and vitreous compartments, resulting in a higher level of oxidative damage might be of considerable clinical significance particularly by accelerating the aging of the anterior and posterior segments of the eye and by worsening the intraocular pressure, the uveal, the retinal(especially macular) pathologies.
基金supported by the National Nature Science Foundation of China (Grant Nos.81171376,91232710,812111313)the Science Fund for Creative Research Group (Grant No.61121004)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20110142110073).
文摘Lasers have been widely used for tattoo removal,but the limited light penetration depth calused by high skin scattering property restricts the therapeutic outcome of deep tattoo.Skin optical clearing method,by introducing optical clearing agent(OCA)into skin,has shown some im-provement in the effect of laser tattoo removal.In this study,the enhanced laser tattoo removal has been quantitatively assessed.OCA was applied to the skin of tattoo animal model and Q switched Nd:YAG laser(1064 nm)irradiation was used to remove the tattoo.The skin evaluation instrument(Mexameter probe,MPA580)was applied to measure the content of tattoo pigment before and after laser treatment,and then the clearance rate of pigment was calculated.Further,Monte Carlo(MC)method was utilized to simulate the efecet of skin optical clearing on light transmission in tattoo skin model.By comparing the pigment change of tattoo areas respectively treated with OCA plus laser and single laser,it was found that pigment clearance of the former tattoo area was increased by 1.5-fold.Further,the MC simulation verifed that the reduced light scattering in skin could increase the effective dose of lumninous fux reaching to the deep tattoo regions.It can be concluded from both experiment and theoretical simulations that skin optical clearing technique could improve the outcome of laser tattoo re moval,which should be beneficial for clinical laser tattoo removal and other laser pigment elimination.