We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength oper...A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.展开更多
We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresp...We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.展开更多
A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at...A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.展开更多
A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved....A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.展开更多
An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incid...An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.展开更多
A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained u...A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.展开更多
We demonstrated an actively acousto-optic Q-switched pulsed laser based on Pr:YLF at 604 nm.A 604 nm continuous-wave(CW)laser with a maximum output power of 3.84 W was achieved for the first time,to the best of our kn...We demonstrated an actively acousto-optic Q-switched pulsed laser based on Pr:YLF at 604 nm.A 604 nm continuous-wave(CW)laser with a maximum output power of 3.84 W was achieved for the first time,to the best of our knowledge.The Q-switched laser with a maximum average output power of 0.384 W,a narrowest pulse duration of 44.5 ns,a maximum single pulse energy of~64.1μJ,and a maximum peak power of~1.44 kW was obtained at a repetition rate of 6 kHz.As far as we know,this was the first report of such a narrow pulse duration,high-power,and high-energy Q-switched pulsed laser at604 nm.The beam quality factors M_x~2and M_y~2were measured to be 2.87 and 2.40,respectively.The results show that acousto-optic Q-switching is a promising method for obtaining pulsed lasers.展开更多
We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode s...We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode side-pumped long neodymium-doped yttrium aluminum garnet rod (φ3×65 mm) is used as the gain medium. Large pulse energy up to 3.15 mJ and peak power up to 346 kW are generated at the repetition rate of 550 Hz, corresponding to the beam quality factors of Mx^2=3.849, My^2=3.868. Monolayer MoSe2 nanosheets applied in the experiment would be a promising SA for a passive Q-switching operation.展开更多
Introduction: Photoepilation by lasers is a popular procedure in aesthetic dermatology for removing unwanted body and facial hair. The use of the most appropriate laser wavelength is crucial as it affects treatment de...Introduction: Photoepilation by lasers is a popular procedure in aesthetic dermatology for removing unwanted body and facial hair. The use of the most appropriate laser wavelength is crucial as it affects treatment depth and melanin absorption. The three commonly used hair removal lasers are of specific wavelengths: 755 nm, 810 nm, and 1064 nm, each preferred certain types of skin and hair characteristics. The current evaluation reports the safety and efficacy of unique blended modes 755/810 nm and 810/1064 nm diode lasers for hair removal. Methods: Hair removal results from 50 patients treated with the 755/810 nm handpiece and 50 patients treated with the 810/1064 nm handpiece were gathered from a few clinics. 3 treatments on various body areas were conducted 6 weeks apart and patients were followed up with 6 months after the last treatment. Results were evaluated by baseline, follow-up photographs, and hair counts. Results: Treatment area photos demonstrated hair reduction in the treated body and facial areas. Average hair count reduction at 6 months follow-up was 84% for the 755/810 nm handpiece and 81% for the 810/1064 nm handpiece. No significant or unexpected adverse events were detected in any of the patients. Conclusions: The novel blended mode hair removal diode lasers are proven to be safe and effective for hair removal in facial and body areas for patients of various skin types and hair characteristics.展开更多
We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 1...We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.展开更多
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632704
文摘A diode-end-pumped Q-switched high-efficiency Nd, Cr:YAG laser with simultaneous dual-wavelength emission at 946nm and 1.3μm is demonstrated. The maximum output power of 1.93 W with simultaneous dual-wavelength operation is achieved at an absorbed pump power of 13.32 W and an absorbed slope efficiency of 15.15%. The maximum optical-optical efficiency is 14.49% with pulse widths of 16.38ns at 946nm and 26.65ns at 1.3μm. A maximum total repetition rate of 43.25 kHz is obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.
基金Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2015FM018 and ZR2014FM028the National Natural Science Foundation of China under Grant No 61475086
文摘A high-power passively Q-switched Nd:YAG laser operating at lll2nm with Cr4+:yAO as a saturable absorber is demonstrated. Under 808 nm diode-direct pumping, the maximum average output power of 2.73 W is achieved at the pump power of 16.65 W, corresponding to an optical-to-optical conversion efficiency of 16.4%. At the same time, the pulse width, pulse repetition rate, single pulse energy and peak power are 27.2ns, 9 kHz, 303.3#3 and 11.2kW, respectively. As far as we know, the result gives the highest average output power at 1112nm generated by an 808 nm diode-end-pumped Nd:YAG laser.
基金Supported by the Foundation of the State Key Laboratory of Crystal Material of Shandong University under Grant No KF1101the Foundation of Shandong University under Grant No 1170072613176+2 种基金the National Natural Science Foundation of China under Grant Nos 11004122 and 11204160the Special Grade of China Postdoctoral Science Foundation under Grant No 201104627the Independent Innovation Foundation of Shandong University under Grant No 2011GN058
文摘A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.
基金Project supported by Tianjin City High School Science&Technology Fund Planning Project(Grant No.20140703)
文摘An efficient 1064-nm Nd:YVO_4laser in-band pumped by a wavelength-locked laser diode(LD) at 913.9 nm was demonstrated. The maximum continuous wave(CW) output power of 23.4 W at 1064 nm was realized with the incident pump power of 40 W, corresponding to a total optical-to-optical efficiency of 58.5%. This is to the best of our knowledge the highest total optical-to-optical efficiency and output power of Nd:YVO_4laser in-band pumped by a 913.9-nm laser diode.The Q-switched operation of this laser was also investigated. Through a contrast experiment of pumping at 808 nm, the experimental results showed that an Nd:YVO_4laser in-band pumped by a wavelength-locked LD at 913.9 nm had excellent pulse stability and beam quality for high repetition rate Q-switching operation.
文摘A Co^2+:spinel passively Q-switched erbium-ytterbium-phosphate glass bonded laser pumped at 940 nm is reported.A pulse energy of 210 μJ, a peak power over 70 kW, and beam quality M-2 parameter of 1.2 are obtained under a pump power of 235 mW. An unbonded laser output experiment with the same dimension of the active material and the saturable absorber as the bonded laser output experiment is carried out. The reason why the output in the bonded laser is improved is determined.
基金supported by the National Natural Science Foundation of China(No.61975168)。
文摘We demonstrated an actively acousto-optic Q-switched pulsed laser based on Pr:YLF at 604 nm.A 604 nm continuous-wave(CW)laser with a maximum output power of 3.84 W was achieved for the first time,to the best of our knowledge.The Q-switched laser with a maximum average output power of 0.384 W,a narrowest pulse duration of 44.5 ns,a maximum single pulse energy of~64.1μJ,and a maximum peak power of~1.44 kW was obtained at a repetition rate of 6 kHz.As far as we know,this was the first report of such a narrow pulse duration,high-power,and high-energy Q-switched pulsed laser at604 nm.The beam quality factors M_x~2and M_y~2were measured to be 2.87 and 2.40,respectively.The results show that acousto-optic Q-switching is a promising method for obtaining pulsed lasers.
基金supported by the National Natural Science Foundation of China(No.61205114)the Science & Technology Coordinator Innovation Plan Project of the Shaanxi Province(No.2011KTCL01-06)the Key Laboratory Project of Shaanxi(No.2010JS112)
文摘We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode side-pumped long neodymium-doped yttrium aluminum garnet rod (φ3×65 mm) is used as the gain medium. Large pulse energy up to 3.15 mJ and peak power up to 346 kW are generated at the repetition rate of 550 Hz, corresponding to the beam quality factors of Mx^2=3.849, My^2=3.868. Monolayer MoSe2 nanosheets applied in the experiment would be a promising SA for a passive Q-switching operation.
文摘Introduction: Photoepilation by lasers is a popular procedure in aesthetic dermatology for removing unwanted body and facial hair. The use of the most appropriate laser wavelength is crucial as it affects treatment depth and melanin absorption. The three commonly used hair removal lasers are of specific wavelengths: 755 nm, 810 nm, and 1064 nm, each preferred certain types of skin and hair characteristics. The current evaluation reports the safety and efficacy of unique blended modes 755/810 nm and 810/1064 nm diode lasers for hair removal. Methods: Hair removal results from 50 patients treated with the 755/810 nm handpiece and 50 patients treated with the 810/1064 nm handpiece were gathered from a few clinics. 3 treatments on various body areas were conducted 6 weeks apart and patients were followed up with 6 months after the last treatment. Results were evaluated by baseline, follow-up photographs, and hair counts. Results: Treatment area photos demonstrated hair reduction in the treated body and facial areas. Average hair count reduction at 6 months follow-up was 84% for the 755/810 nm handpiece and 81% for the 810/1064 nm handpiece. No significant or unexpected adverse events were detected in any of the patients. Conclusions: The novel blended mode hair removal diode lasers are proven to be safe and effective for hair removal in facial and body areas for patients of various skin types and hair characteristics.
基金supported by National Science Council, Taiwan under contract NSC102-2221-E-007-100-MY2
文摘We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.