This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) us...Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.展开更多
MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheet...MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.展开更多
A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma...A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma interaction. The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.展开更多
We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription ...We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription method. The multi-color Q-switched pulses can be always self-synchronized when the group delay differences between neighboring spectra range from-3.4 to 3.4 ps.The starting and evolution dynamics indicate that the saturable absorption effect of the carbon nanotube plays a dual role: synchronously triggering the startup of the pulse at successive colors by active Q-switching and spontaneously compensating to some extent the temporal walk-off of the multi-color pulses through the cross saturable absorption modulation. This work unveils the intracavity self-synchronization mechanism of the multi-color Q-switched pulses and also demonstrates the potential of PI-FBGs for the customizable generation of the synchronized multi-color pulse in a single cavity.展开更多
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the...An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and展开更多
The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the we...The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the well-known short pulse effect.展开更多
The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an anal...The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.展开更多
An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A ...An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A radiation source with a flattop temperature of about130 e V that lasted about 5 ns was obtained.The previous analytical iteration method based on power balance and self-similar solution of ablation was modified taking into account the plasma movements and it was used to design the laser pulse shape for experiment.A comparison between experimental results and simulation is presented and better agreement was achieved using the modified method.Further improvements are discussed.展开更多
The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discover...The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discovered by M. Perelman and the author of this paper. Six papers on the PeTa effect have been published in this journal over the past nine years. They are devoted to the development of PeTa models to explain the following phenomena: IR radiation from cold surfaces, cavitation luminescence/sonoluminescence (CL/SL), laser-induced bubble luminescence (LIBL), and vapor bubble luminescence (VBL) in underwater geysers. This paper describes the sources of PeTa radiation in the Earth’s atmosphere. These sources of infrared radiation have been investigated by numerous research groups, but their interpretation either does not exist at all, or it is erroneous. The following phenomena are specifically considered: PeTa radiation during the formation of clouds and fog;a pulse laser based on the PeTa radiation;condensation explosions as sources of PaTa radiation;measurement of the concentration of water vapor in the atmosphere using PeTa radiation;atmospheric scintillation of infrared radiation in the atmosphere due to the PeTa effect;PeTa radiation as a source of comfort for the igloo;the influence of PeTa radiation on living organisms;PeTa radiation due to characteristics of tropical storms;PeTa radiation as a possible precursor to earthquakes. The problem of global warming, which worries everyone, as it turns out, is also associated with the PeTa effect.展开更多
We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse en...We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.展开更多
In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a h...A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金Supported by the National Natural Science Foundation of China under Grant No 61705183the Central University Special Fund Basic Research and Operating Expenses under Grant No GK201702005+1 种基金the Natural Science Foundation of Shaanxi Province under Grant No 2017JM6091the Fundamental Research Funds for the Central Universities under Grant No 2017TS011
文摘Using the reduced graphene oxide(rGO) as a saturable absorber(SA) in an Er-doped fiber(EDF) laser cavity,we obtain the Q-switching operation. The rGO SA is prepared by depositing the GO on fluorine mica(FM) using the thermal reduction method. The modulation depth of rGO/FM is measured to be 3.2%. By incorporating the rGO/FM film into the EDF laser cavity, we obtain stable Q-switched pulses. The shortest pulse duration is3.53 μs, and the maximum single pulse energy is 48.19 nJ. The long-term stability of working is well exhibited.The experimental results show that the rGO possesses potential photonics applications.
基金supported by the Ministry of Higher under Fundamental Research Grant Scheme(No.FRGS/1/2020/TK0/UTM/02/46)Nippon Sheet Glass Grant(No.R.K130000.7343.4B818)。
文摘MXenes,drawn from MAX phases,are special two-dimensional substances with numerous advantages in nonlinear optics,specifically in giant and ultrashort pulsed-laser applications.Ti_(3)C_(2)T_(x)and Ti_(2)CT_(x)nanosheets however rapidly deteriorate under ambient conditions,limiting their applications.This paper demonstrates how excellent modulation depth of one of the MAX phase compounds vanadium zinc carbide(V_2ZnC)makes it a brilliant saturable absorber(SA)in passively Q-switched all-fiber pulsed lasers,integrated such that a 16.73-μm V_(2)ZnC-polyvinyl alcohol(PVA)thin film acts as SA in the laser.Saturable and non-saturable absorptions were found to be 13.2%and 10.47%,while saturation optical intensity and modulation depth were 6.25 k W/cm^(2)and 12.43%,respectively,illustrating the optical nonlinearity.The superiority of MAX-PVA,fabricated in four distinct ratios,was demonstrated by the fact that it self-starts a giant pulsed laser at pump power as low as 22.5 mW and firmly accomplished 120.6 kHz repetition rate with a pulse width of 2.08μs.It is a fine SA for the use of pulsed-laser production using all-fiber laser due to fabrication simplicity and great optical,thermophysical,and mechanical qualities.
基金Project supported by the National Natural Science Foundation of China(Grant No10574010)
文摘A Cherenkowtype terahertz electromagnetic radiation is revealed, which results efficiently from the collective effects in the time-domain of ultrafast pulsed electron current produced by ultrafast intense laser plasma interaction. The emitted pulse waveform and spectrum, and the dependence of laser pulse parameters on the structure of the radiation field are investigated numerically. The condition of THz radiation generation in this regime and Cherenkov geometry of the radiation field are studied analytically.
基金supported by the National Natural Science Foundation of China (No. 12274344)the Natural Science Basic Research Program of Shaanxi (No. 2023-JC-YB-563)the Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515011517)。
文摘We demonstrate an intracavity self-synchronized multi-color Q-switched fiber laser using a parallel-integrated fiber Bragg grating(PI-FBG), fabricated by a femtosecond laser with a point-by-point parallel inscription method. The multi-color Q-switched pulses can be always self-synchronized when the group delay differences between neighboring spectra range from-3.4 to 3.4 ps.The starting and evolution dynamics indicate that the saturable absorption effect of the carbon nanotube plays a dual role: synchronously triggering the startup of the pulse at successive colors by active Q-switching and spontaneously compensating to some extent the temporal walk-off of the multi-color pulses through the cross saturable absorption modulation. This work unveils the intracavity self-synchronization mechanism of the multi-color Q-switched pulses and also demonstrates the potential of PI-FBGs for the customizable generation of the synchronized multi-color pulse in a single cavity.
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
文摘An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and
文摘The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the well-known short pulse effect.
文摘The efficient production of energetic γ photons is a significant physical process in the relativistic ultrashortpulse laser-plasma inducing photonuclear action. Based on the interaction of laser-solid-target, an analytical theory onstimulated γ photon emission from a hot electron firing the target-nucleus is developed by a relativistic full quantummethod. The emitting power or probability of γ photon in arbitrary space direction can be calculated for laser irradiatingsolid-target normally. It is valid only if the scatter-centre is immovable or its motion can be neglected compared withthat of the scattered electrons.
文摘An experiment was performed on the Shenguang III prototype laser facility to continue the study on hohlraum radiation source with approximately constant radiation temperature using a continuously shaped laser pulse.A radiation source with a flattop temperature of about130 e V that lasted about 5 ns was obtained.The previous analytical iteration method based on power balance and self-similar solution of ablation was modified taking into account the plasma movements and it was used to design the laser pulse shape for experiment.A comparison between experimental results and simulation is presented and better agreement was achieved using the modified method.Further improvements are discussed.
文摘The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discovered by M. Perelman and the author of this paper. Six papers on the PeTa effect have been published in this journal over the past nine years. They are devoted to the development of PeTa models to explain the following phenomena: IR radiation from cold surfaces, cavitation luminescence/sonoluminescence (CL/SL), laser-induced bubble luminescence (LIBL), and vapor bubble luminescence (VBL) in underwater geysers. This paper describes the sources of PeTa radiation in the Earth’s atmosphere. These sources of infrared radiation have been investigated by numerous research groups, but their interpretation either does not exist at all, or it is erroneous. The following phenomena are specifically considered: PeTa radiation during the formation of clouds and fog;a pulse laser based on the PeTa radiation;condensation explosions as sources of PaTa radiation;measurement of the concentration of water vapor in the atmosphere using PeTa radiation;atmospheric scintillation of infrared radiation in the atmosphere due to the PeTa effect;PeTa radiation as a source of comfort for the igloo;the influence of PeTa radiation on living organisms;PeTa radiation due to characteristics of tropical storms;PeTa radiation as a possible precursor to earthquakes. The problem of global warming, which worries everyone, as it turns out, is also associated with the PeTa effect.
基金supported by the National Natural Science Foundation of China(Grant Nos.61275142 12751426,1308042,31608042,and 51321091)the China Postdoctoral Science Foundation(Grant No.2014T70633)the Foundation for Outstanding Young Scientists in Shandong Province(Grant No.BS2012ZZ001)
文摘We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
基金supported by the Ministry of Higher Education/University of Malaya(Nos.UM.C/HIR/MOHE/SC/01 and UPGP2012)
文摘A Q-switched distributed Bragg reflector fiber laser using a graphene passive saturable absorber is proposed in a cavity consisting of a fiber Bragg grating and Faraday rotator mirror as end mirrors, together with a highly doped erbium-doped fiber as a gain source. The laser has a Q-switched threshold of about 28 mW and a tunable repetition rate of 10.4-18.0 kHz with varying pump power. The shortest pulse width obtained from the system is 3.7 its, with a maximum pulse energy and peak power of 22.2 nJ and 3.4 mW, respectively.