The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stres...The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TIC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TIC side, which is consistent with the stress FEM calculating results.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFA0707300)the National Natural Science Foundation of China(Nos.51901151,51905372,52275362,52171122)China Postdoctoral Science Foundation(Nos.2020M680918,2021T140503)。
基金supported by National Natural Science Foundation of China (Grant No. 50874069)Development Project of Science and Technology of Shandong Province (2007GG10004016)+1 种基金Shandong Province Natural Science Foundation (Y2007F54)Excellent Mid-Youth Foundation of Shandong Province (2006BS04004)
文摘The distributions of the axial stress and shear stress in Al2O3-TiC/Q235 diffusion bonded joints were studied using finite element method (FEM). The effect of interlayer thickness on the axial stress and shear stress was also investigated. The results indicate that the gradients of the axial stress and shear stress are great near the joint edge. The maximal shear stress produces at the interface of the Al2O3-TIC and Ti interlayer. With the increase of Cu interlayer thickness, the magnitudes of the axial stress and shear stress first decrease and then increase. The distribution of the axial stress changes greatly with a little change in the shear stress. The shear fracture initiates at the interface of the Al2O3-TiC/ Ti interlayer with high shear stress and then propagates to the Al2O3-TIC side, which is consistent with the stress FEM calculating results.