As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde...As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.展开更多
The Q345 plate steel austenite recrystallization behavior and strain accumulation during rolling were investigated through thermal simulation and rolling. The effect of the recrystallization behavior on the microstruc...The Q345 plate steel austenite recrystallization behavior and strain accumulation during rolling were investigated through thermal simulation and rolling. The effect of the recrystallization behavior on the microstructure and properties of the steel was discussed and analyzed. The control principles of the pass reduction in the austenite recrystallization region and partial recrystallization region were established. It is found that to increase the thickness of intermediate billet in the finish temperature interval of 880-820℃ is favorable to grain refinement. The result has been applied to the industrial production of the 3 500 mm plate mill of Shougang Group. The average grain size of the steel plate conforms to ASTM No. 10-12, and the grade of band structure has been reduced to below 1.5.展开更多
ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologie...ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.展开更多
To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, micr...To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are made to systematically evaluate the steel plate in the normalized and normalized + stress relieved states. The results show the cladding interface of the S30403 + Q345R roll-bonded clad steel plate has high shear strength, the base metal has good properties, and the mechanical properties of the steel plate head and tail are uniform. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.展开更多
Because of its advantages of light weight, high strength and convenient construction, steel structure has gradually become the first choice for large-span and high-rise structures. The use of high strength steel in bu...Because of its advantages of light weight, high strength and convenient construction, steel structure has gradually become the first choice for large-span and high-rise structures. The use of high strength steel in building engineering can reduce the section size of components and the weight of the structure, thus increasing the building area. But steel is not fire-resistant, when the temperature reaches 600<span style="white-space:nowrap;">°</span>C, steel loses most of the stiffness and strength. Therefore, it is of great significance to study the fire resistance of steel structures, and the mechanical properties of steel structures at high temperature are the foundation of the fire resistance research. The mechanical properties of steel after high temperature are the basis for the safety assessment of steel structure after fire. Therefore, this paper studies the mechanical properties of Q345 steel after high temperature cooling.展开更多
基金Science and Technology Project of Fire Rescue Bureau of Ministry of Emergency Management(Grant No.2022XFZD05)S&T Program of Hebei(Grant No.22375419D)National Natural Science Foundation of China(Grant No.11802160).
文摘As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response.
文摘The Q345 plate steel austenite recrystallization behavior and strain accumulation during rolling were investigated through thermal simulation and rolling. The effect of the recrystallization behavior on the microstructure and properties of the steel was discussed and analyzed. The control principles of the pass reduction in the austenite recrystallization region and partial recrystallization region were established. It is found that to increase the thickness of intermediate billet in the finish temperature interval of 880-820℃ is favorable to grain refinement. The result has been applied to the industrial production of the 3 500 mm plate mill of Shougang Group. The average grain size of the steel plate conforms to ASTM No. 10-12, and the grade of band structure has been reduced to below 1.5.
基金Projects(51671166,51434008)supported by the National Natural Science Foundation of ChinaProject(2013CB733000)supported by the National Basic Research Program of China
文摘ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.
文摘To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are made to systematically evaluate the steel plate in the normalized and normalized + stress relieved states. The results show the cladding interface of the S30403 + Q345R roll-bonded clad steel plate has high shear strength, the base metal has good properties, and the mechanical properties of the steel plate head and tail are uniform. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.
文摘Because of its advantages of light weight, high strength and convenient construction, steel structure has gradually become the first choice for large-span and high-rise structures. The use of high strength steel in building engineering can reduce the section size of components and the weight of the structure, thus increasing the building area. But steel is not fire-resistant, when the temperature reaches 600<span style="white-space:nowrap;">°</span>C, steel loses most of the stiffness and strength. Therefore, it is of great significance to study the fire resistance of steel structures, and the mechanical properties of steel structures at high temperature are the foundation of the fire resistance research. The mechanical properties of steel after high temperature are the basis for the safety assessment of steel structure after fire. Therefore, this paper studies the mechanical properties of Q345 steel after high temperature cooling.