电力铁塔用18 mm厚160角钢Q420C(/%:≤0.20C,1.00~1.70Mn,≤0.55Si,≤0.035S,≤0.035P,0.02~0.20V,≥0.015Als)的冶金流程为80 t BOF-LF-CC-车制工艺。利用光学显微镜、SEM以及能谱分析仪对热轧角钢角部裂纹进行了分析,结果表明,裂纹周...电力铁塔用18 mm厚160角钢Q420C(/%:≤0.20C,1.00~1.70Mn,≤0.55Si,≤0.035S,≤0.035P,0.02~0.20V,≥0.015Als)的冶金流程为80 t BOF-LF-CC-车制工艺。利用光学显微镜、SEM以及能谱分析仪对热轧角钢角部裂纹进行了分析,结果表明,裂纹周围存在脱碳层及铁素体膜,裂纹处发现S富集及在晶界析出的AlN破坏了钢基体的连续性;得出连铸振痕谷底的夹渣、成分偏析,热应力和弯曲矫直应力导致了角钢沿晶界开裂。通过降低[N]至0.008 0%,控制Als 0.017%~0.022%,Mn/S≥80,钢水过热度≥25℃,保护渣牯度0.73 Pa·s,矫直温度≥950℃等工艺措施,使连铸坯的优质品率由原25.78%提高至85%,有效地降低了角钢角部裂纹的发生。展开更多
介绍了规格100 mm Q420特厚板的物理模拟过程,分析了不同变形和热处理工艺对Q420特厚板组织和性能的影响,并得出不同质量级别Q420厚板的最佳生产工艺.结果表明:采用TMCP工艺钢板的强度、塑性和韧性均优于采用UPR工艺的钢板,且相应位置...介绍了规格100 mm Q420特厚板的物理模拟过程,分析了不同变形和热处理工艺对Q420特厚板组织和性能的影响,并得出不同质量级别Q420厚板的最佳生产工艺.结果表明:采用TMCP工艺钢板的强度、塑性和韧性均优于采用UPR工艺的钢板,且相应位置铁素体晶粒较细小;热轧钢板正火热处理显著改善了钢的塑性和韧性,但是降低了钢的强度;不同热轧工艺厚板在相同的正火温度下,热处理后钢板的强韧性相差较小,热处理前的轧制方式对热处理后钢板的组织和性能影响不大.展开更多
文摘介绍了规格100 mm Q420特厚板的物理模拟过程,分析了不同变形和热处理工艺对Q420特厚板组织和性能的影响,并得出不同质量级别Q420厚板的最佳生产工艺.结果表明:采用TMCP工艺钢板的强度、塑性和韧性均优于采用UPR工艺的钢板,且相应位置铁素体晶粒较细小;热轧钢板正火热处理显著改善了钢的塑性和韧性,但是降低了钢的强度;不同热轧工艺厚板在相同的正火温度下,热处理后钢板的强韧性相差较小,热处理前的轧制方式对热处理后钢板的组织和性能影响不大.