Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load....Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load. According to the fatigue cumulative damage method, the number of fatigue pre-damage vibration is designed in proportion. Then the fatigue pre-damage test is carried out on the high-strength steel, the stress-strain curve and the variation of residual mechanical property reduction coefficient with fatigue damage were drawn. The results show that: compared with the undamaged specimens, the yield strength and tensile strength of Q690 steel are less affected by fatigue damage, but the elongation changes more significantly, and the elastic modulus is not significantly affected. Finally, through the change of mechanical properties of Q690 high-strength steel with different fatigue damage, it provides a scientific basis for the performance evaluation of existing Q690 high-strength steel structure after fatigue damage.展开更多
文摘Through the static tensile test of Q690 high-strength steel, the relevant mechanical parameters are obtained and the maximum fatigue load is determined. The fatigue life is measured by the fatigue test under the load. According to the fatigue cumulative damage method, the number of fatigue pre-damage vibration is designed in proportion. Then the fatigue pre-damage test is carried out on the high-strength steel, the stress-strain curve and the variation of residual mechanical property reduction coefficient with fatigue damage were drawn. The results show that: compared with the undamaged specimens, the yield strength and tensile strength of Q690 steel are less affected by fatigue damage, but the elongation changes more significantly, and the elastic modulus is not significantly affected. Finally, through the change of mechanical properties of Q690 high-strength steel with different fatigue damage, it provides a scientific basis for the performance evaluation of existing Q690 high-strength steel structure after fatigue damage.