Multi-type quasi-cyclic(QC) low-density parity-check(LDPC) codes can be considered as multiple-edge protograph QC-LDPC codes having some advantages in the minimum Hamming distance bound over single-edge protograph cod...Multi-type quasi-cyclic(QC) low-density parity-check(LDPC) codes can be considered as multiple-edge protograph QC-LDPC codes having some advantages in the minimum Hamming distance bound over single-edge protograph codes or type-Ⅰ QC-LDPC codes when the base matrices have the same size. In this paper, we investigate a class of multi-type QC-LDPC codes whose parity-check matrices contain just one blockrow of circulants and we obtain the generator matrix of such codes in general form. Using the permutation arrays and defining injection arrays, we present a new approach to construct a class of high-rate type-Ⅰ QC-LDPC codes with girth 6 from the constructed 4-cycle free multi-type QC-LDPC codes. In continue, for 2 ≤ w≤6, some type-w QC-LDPC codes with girth 6 are constructed explicitly such that the constructed codes are flexible in terms of rate and length. To the best of our knowledge, for w = 5,6, this is the first paper which deals with the explicit construction of type-w QC-LDPC codes with girth 6 and high rates. Moreover, for w = 3, 4, the constructed type-w QC-LDPC codes have better(6,8)-cycle multiplicities than the codes with minimum achievable length recently constructed by cyclic difference families(CDFs). Simulation results show that the binary and non-binary constructed codes outperform the constituent underlying QC-LDPC codes.展开更多
In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filt...A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.展开更多
Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first...Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.展开更多
The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead ...The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulti...Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.展开更多
In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of t...In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.展开更多
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ...Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.展开更多
Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in...Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave,and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of threelayer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results.展开更多
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,...A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.展开更多
Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened com...Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.展开更多
文摘Multi-type quasi-cyclic(QC) low-density parity-check(LDPC) codes can be considered as multiple-edge protograph QC-LDPC codes having some advantages in the minimum Hamming distance bound over single-edge protograph codes or type-Ⅰ QC-LDPC codes when the base matrices have the same size. In this paper, we investigate a class of multi-type QC-LDPC codes whose parity-check matrices contain just one blockrow of circulants and we obtain the generator matrix of such codes in general form. Using the permutation arrays and defining injection arrays, we present a new approach to construct a class of high-rate type-Ⅰ QC-LDPC codes with girth 6 from the constructed 4-cycle free multi-type QC-LDPC codes. In continue, for 2 ≤ w≤6, some type-w QC-LDPC codes with girth 6 are constructed explicitly such that the constructed codes are flexible in terms of rate and length. To the best of our knowledge, for w = 5,6, this is the first paper which deals with the explicit construction of type-w QC-LDPC codes with girth 6 and high rates. Moreover, for w = 3, 4, the constructed type-w QC-LDPC codes have better(6,8)-cycle multiplicities than the codes with minimum achievable length recently constructed by cyclic difference families(CDFs). Simulation results show that the binary and non-binary constructed codes outperform the constituent underlying QC-LDPC codes.
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.
基金The National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Quasi-cyclic low-density parity-check (QC-LDPC) codes can be constructed conveniently by cyclic lifting of protographs. For the purpose of eliminating short cycles in the Tanner graph to guarantee performance, first an algorithm to enumerate the harmful short cycles in the protograph is designed, and then a greedy algorithm is proposed to assign proper permutation shifts to the circulant permutation submatrices in the parity check matrix after lifting. Compared with the existing deterministic edge swapping (DES) algorithms, the proposed greedy algorithm adds more constraints in the assignment of permutation shifts to improve performance. Simulation results verify that it outperforms DES in reducing short cycles. In addition, it is proved that the parity check matrices of the cyclic lifted QC-LDPC codes can be transformed into block lower triangular ones when the lifting factor is a power of 2. Utilizing this property, the QC- LDPC codes can be encoded by preprocessing the base matrices, which reduces the encoding complexity to a large extent.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘The existing constructions of quasi-cyclic low-density parity-check (QC-LDPC) codes do not consider the problems of small stopping sets and small girth together in the Tanner graph, while their existences will lead to the bit error rate (BER) performance of QC-LDPC codes being much poorer than that of randomly constructed LDPC codes even decoding failure. To solve the problem, some theorems of the specific chosen parity-check matrix of QC-LDPC codes without small stopping sets and small girth are proposed. A novel construction for QC-LDPC codes with long block lengths is presented by multiplying mmin or the multiple of mmin, which is the minimum order of the identity matrix for the chosen parity-check matrix. The simulation results show that the specific chosen parity-check matrix of QC-LDPC codes can effectively avoid specified stopping sets and small girth and exhibit excellent BER performance than random LDPC codes with the same longer codes length.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金partially supported by the National Key Research and Development Project under Grant 2020YFB1806805。
文摘Though belief propagation bit-flip(BPBF)decoding improves the error correction performance of polar codes,it uses the exhaustive flips method to achieve the error correction performance of CA-SCL decoding,thus resulting in high decoding complexity and latency.To alleviate this issue,we incorporate the LDPC-CRC-Polar coding scheme with BPBF and propose an improved belief propagation decoder for LDPC-CRC-Polar codes with bit-freezing(LDPCCRC-Polar codes BPBFz).The proposed LDPCCRC-Polar codes BPBFz employs the LDPC code to ensure the reliability of the flipping set,i.e.,critical set(CS),and dynamically update it.The modified CS is further utilized for the identification of error-prone bits.The proposed LDPC-CRC-Polar codes BPBFz obtains remarkable error correction performance and is comparable to that of the CA-SCL(L=16)decoder under medium-to-high signal-to-noise ratio(SNR)regions.It gains up to 1.2dB and 0.9dB at a fixed BLER=10-4compared with BP and BPBF(CS-1),respectively.In addition,the proposed LDPC-CRC-Polar codes BPBFz has lower decoding latency compared with CA-SCL and BPBF,i.e.,it is 15 times faster than CA-SCL(L=16)at high SNR regions.
基金supported in part by China NSF under Grants No.61771081 and 62072064the Fundamental Research Funds for the Central Universities(China)under Grant cstc2019jcyjmsxmX0110+2 种基金the Project of Chongqing Natural Science Foundation under Grant CSTB2022NSCQ-MSX0990Science and Technology Research Project of Chongqing Education Commission under Grant KJQN202000612the Venture and Innovation Support Program for Chongqing Overseas Returnees under Grant cx2020070.
文摘In this paper,we propose a doping approach to lower the error floor of Low-Density Parity-Check(LDPC)codes.The doping component is a short block code in which the information bits are selected from the coded bits of the dominant trapping sets of the LDPC code.Accordingly,an algorithm for selecting the information bits of the short code is proposed,and a specific two-stage decoding algorithm is presented.Simulation results demonstrate that the proposed doped LDPC code achieves up to 2.0 dB gain compared with the original LDPC code at a frame error rate of 10^(-6)Furthermore,the proposed design can lower the error floor of original LDPC Codes.
基金support this work is the Key Research and Development Program of Heilongjiang Province,specifically Grant Number 2023ZX02C10.
文摘Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.
基金supported in part by the Science and technology innovation leading talent project of special support plan for high-level talents in Zhejiang Province(2021R52032)Natural Science Foundation of Zhejiang Province under grant No.LY22F050001+1 种基金Special project for professional degree postgraduates of Zhejiang Provincial Education Department(No.Y202353663,Y202353686)in part by the National Natural Science Foundation of China under grant No.62175224.China Jiliang University Basic Research Expenses.
文摘Based on the principle of super-symmetric lens with quadratic phase gradient transformation, combined with the principle of digital coding of metasurface, we propose a wide-angle coded metalens for focusing control in two-dimensional space. This metalens achieves focus shift in the x-direction by changing the oblique incidence angle of the incident wave,and focus control in the y-direction by combining with the convolution principle of the digitally coded metasurface to achieve flexible control of light focusing in the two-dimensional plane. The metasurface unit is mainly composed of threelayer of metal structure and two layers of medium, and the transmission phase is obtained by changing the middle layer of metal structure, which in turn obtains the required phase distribution of the metalens. The design of the metalens realizes the function of the lens with a large viewing angle at the x-polarized incidence, and realizes two-dimensional focus control. Experimentally, we prepared the designed coding metalens and tested the focus control function of the wide-angle coding metalens. The experimental results are in good agreement with the design results.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61871234 and 62375140)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX190900).
文摘A Gray code based gradient-free optimization(GCO)algorithm is proposed to update the parameters of parameterized quantum circuits(PQCs)in this work.Each parameter of PQCs is encoded as a binary string,named as a gene,and a genetic-based method is adopted to select the offsprings.The individuals in the offspring are decoded in Gray code way to keep Hamming distance,and then are evaluated to obtain the best one with the lowest cost value in each iteration.The algorithm is performed iteratively for all parameters one by one until the cost value satisfies the stop condition or the number of iterations is reached.The GCO algorithm is demonstrated for classification tasks in Iris and MNIST datasets,and their performance are compared by those with the Bayesian optimization algorithm and binary code based optimization algorithm.The simulation results show that the GCO algorithm can reach high accuracies steadily for quantum classification tasks.Importantly,the GCO algorithm has a robust performance in the noise environment.
文摘Blockchain technology has witnessed a burgeoning integration into diverse realms of economic and societal development.Nevertheless,scalability challenges,characterized by diminished broadcast efficiency,heightened communication overhead,and escalated storage costs,have significantly constrained the broad-scale application of blockchain.This paper introduces a novel Encode-and CRT-based Scalability Scheme(ECSS),meticulously refined to enhance both block broadcasting and storage.Primarily,ECSS categorizes nodes into distinct domains,thereby reducing the network diameter and augmenting transmission efficiency.Secondly,ECSS streamlines block transmission through a compact block protocol and robust RS coding,which not only reduces the size of broadcasted blocks but also ensures transmission reliability.Finally,ECSS utilizes the Chinese remainder theorem,designating the block body as the compression target and mapping it to multiple modules to achieve efficient storage,thereby alleviating the storage burdens on nodes.To evaluate ECSS’s performance,we established an experimental platformand conducted comprehensive assessments.Empirical results demonstrate that ECSS attains superior network scalability and stability,reducing communication overhead by an impressive 72% and total storage costs by a substantial 63.6%.