This paper describes a new numerical QCD calculation method (direct minimization of QCD-QED-action) and its results for the first-generation (u, d) hadrons. Here we start with the standard color-Lagrangian LQCD = LDir...This paper describes a new numerical QCD calculation method (direct minimization of QCD-QED-action) and its results for the first-generation (u, d) hadrons. Here we start with the standard color-Lagrangian LQCD = LDirac + Lgluon, model the quarks q<sub>i</sub> as parameterized gaussians, and the gluons Ag<sub>i</sub> as Ritz-Galerkin-series. We minimize the Lagrangian numerically with parameters par = (par (q), {α<sub>k</sub>}, par (Ag)) for first-generation hadrons (nucleons, pseudo-scalar mesons, vector mesons). The resulting parameters yield the correct masses and correct magnetic moments for the nucleons, the gluon-distribution and the quark-distribution with interesting insights into the hadron structure.展开更多
In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and ...In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and further proposed a method to determine the QCD gas effective mass based on a pseudo-first order β decay reaction kinetics. In a second paper, we proposed a method to determine if the QCD gas density on black hole ergospheres grows in time and hence their ergoregions act as matter reactors that break matter and antimatter symmetry by trapping antimatter particles. In this paper, we suggest that quark and antiquark pair exchange reactions between particles and the QCD gas may accelerate or decelerate particles and that the quarks and antiquarks numbers are strictly conserved in these pair exchange reactions. We further suggest that antimatter plays a principal role in the universe and is inseparable from both matter, via Dirac’ spinors, and space, via the quarks and antiquarks pair exchange reactions with the QCD gas;however with a singular exception, black hole ergospheres separate and black hole ergoregions trap antimatter particles.展开更多
The N-N <sup>1</sup>S<sub>0</sub> scattering length differences Δα<sub>CSB</sub> and Δα<sub>CIH</sub> of the charge symmetrybreaking and charge independence breaking...The N-N <sup>1</sup>S<sub>0</sub> scattering length differences Δα<sub>CSB</sub> and Δα<sub>CIH</sub> of the charge symmetrybreaking and charge independence breaking are calculated by a resonating group method with aquark cluster model.By adding the QED-QCD interference effect to the quark mass differenceand the electromagnetic interaction,the Δα<sub>CSH</sub> and Δα<sub>CIH</sub> can be reproduced with modelparameters constrained by the hadron isomultiplet masses.展开更多
In relativistic quantum theories interactions are mediated by force particles called elementary vector bosons: Quantum Electrodynamics (QED) predicts the photon to be the carrier of the electromagnetic force;Quantum F...In relativistic quantum theories interactions are mediated by force particles called elementary vector bosons: Quantum Electrodynamics (QED) predicts the photon to be the carrier of the electromagnetic force;Quantum Flavordynamics (QFD), also called electroweak theory, predicts the Ws and Z0 as the carriers of the weak force;and Quantum Chromodynamics (QCD) predicts gluons and mesons as the carriers of the strong force. All these particles are also called exchange or virtual particles. According to these theories the virtual particle appears spontaneously near one particle and disappears near the other. Even though it has consistently been claimed that experimental detection of these particles is a confirmation of each of these theories, we are, however, of the view that one cannot detect a particle that appears and disappears within a “black box”. In this paper we discuss the geometrical theory of weak and strong nuclear interactions.展开更多
文摘This paper describes a new numerical QCD calculation method (direct minimization of QCD-QED-action) and its results for the first-generation (u, d) hadrons. Here we start with the standard color-Lagrangian LQCD = LDirac + Lgluon, model the quarks q<sub>i</sub> as parameterized gaussians, and the gluons Ag<sub>i</sub> as Ritz-Galerkin-series. We minimize the Lagrangian numerically with parameters par = (par (q), {α<sub>k</sub>}, par (Ag)) for first-generation hadrons (nucleons, pseudo-scalar mesons, vector mesons). The resulting parameters yield the correct masses and correct magnetic moments for the nucleons, the gluon-distribution and the quark-distribution with interesting insights into the hadron structure.
文摘In a previous paper, we proposed that u<sub>d</sub>~</sup>d<sub>u</sub>~</sup> exotic mesons, comprised of even number of quarks and antiquarks, form a QCD gas that fills space and further proposed a method to determine the QCD gas effective mass based on a pseudo-first order β decay reaction kinetics. In a second paper, we proposed a method to determine if the QCD gas density on black hole ergospheres grows in time and hence their ergoregions act as matter reactors that break matter and antimatter symmetry by trapping antimatter particles. In this paper, we suggest that quark and antiquark pair exchange reactions between particles and the QCD gas may accelerate or decelerate particles and that the quarks and antiquarks numbers are strictly conserved in these pair exchange reactions. We further suggest that antimatter plays a principal role in the universe and is inseparable from both matter, via Dirac’ spinors, and space, via the quarks and antiquarks pair exchange reactions with the QCD gas;however with a singular exception, black hole ergospheres separate and black hole ergoregions trap antimatter particles.
基金The project supported by the NSF(19675018)SEDC of ChinaSSTC of China
文摘The N-N <sup>1</sup>S<sub>0</sub> scattering length differences Δα<sub>CSB</sub> and Δα<sub>CIH</sub> of the charge symmetrybreaking and charge independence breaking are calculated by a resonating group method with aquark cluster model.By adding the QED-QCD interference effect to the quark mass differenceand the electromagnetic interaction,the Δα<sub>CSH</sub> and Δα<sub>CIH</sub> can be reproduced with modelparameters constrained by the hadron isomultiplet masses.
文摘In relativistic quantum theories interactions are mediated by force particles called elementary vector bosons: Quantum Electrodynamics (QED) predicts the photon to be the carrier of the electromagnetic force;Quantum Flavordynamics (QFD), also called electroweak theory, predicts the Ws and Z0 as the carriers of the weak force;and Quantum Chromodynamics (QCD) predicts gluons and mesons as the carriers of the strong force. All these particles are also called exchange or virtual particles. According to these theories the virtual particle appears spontaneously near one particle and disappears near the other. Even though it has consistently been claimed that experimental detection of these particles is a confirmation of each of these theories, we are, however, of the view that one cannot detect a particle that appears and disappears within a “black box”. In this paper we discuss the geometrical theory of weak and strong nuclear interactions.