期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
带Wilkinson位移的QL方法的总体收敛性的新证明(英文) 被引量:1
1
作者 蒋尔雄 《黑龙江大学自然科学学报》 CAS 2004年第4期1-3,共3页
很多实际问题,如求结构振动的固有频率,动力系统稳定性的临界值等常常归结为计算对称矩阵的特征值,而首选的计算方法是先把该矩阵正交相似变换成一个对称三对角矩阵,再对这个对称三对角矩阵用带位移的QR(QL)方法.1968年J.H.Wilkinson给... 很多实际问题,如求结构振动的固有频率,动力系统稳定性的临界值等常常归结为计算对称矩阵的特征值,而首选的计算方法是先把该矩阵正交相似变换成一个对称三对角矩阵,再对这个对称三对角矩阵用带位移的QR(QL)方法.1968年J.H.Wilkinson给出对称三对角矩阵带位移的QR方法的第一个总体收敛定理,他证明了带Wilkinson位移的QR方法的总体收敛性,这是QR(QL)方法的理论基础,但他的证明太复杂.1978年W.Ho?man和B.N.Parlett又给出一个新证明,这是一个很精彩的证明,但也不是很简单.在此给出一简单而初等的证明,很适宜放在教材中. 展开更多
关键词 矩阵特征值问题 对称三对角矩阵 qr(ql)方法 Wilkinson位移 总体收敛性
下载PDF
QL Method for Symmetric Tridiagonal Matrices
2
作者 蒋尔雄 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期369-377,共9页
QL(QR) method is an efficient method to find eigenvalues of a matrix. Especially we use QL(QR) method to find eigenvalues of a symmetric tridiagonal matrix. In this case it only costs O(n2) flops, to find all eigenval... QL(QR) method is an efficient method to find eigenvalues of a matrix. Especially we use QL(QR) method to find eigenvalues of a symmetric tridiagonal matrix. In this case it only costs O(n2) flops, to find all eigenvalues. So it is one of the most efficient method for symmetric tridiagonal matrices. Many experts have researched it. Even the method is mature, it still has many problems need to be researched. We put forward five problems here. They are: (1) Convergence and convergence rate; (2) The convergence of diagonal elements; (3) Shift designed to produce the eigenvalues in monotone order; (4) QL algorithm with multi-shift; (5) Error bound. We intoduce our works on these problems, some of them were published and some are new. 展开更多
关键词 matrix eigenvalue problem symmetric tridiagonal matrix ql(qr) algorithm SHIFT error bound.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部