期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Quasi-Monte Carlo Simulation-Based SFEM for Slope Reliability Analysis
1
作者 于玉贞 谢立全 张丙印 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期56-61,共6页
Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept a... Considering the stochastic spatial variation of geotechnical parameters over the slope, a Stochastic Finite Element Method (SFEM) is established based on the combination of the Shear Strength Reduction (SSR) concept and quasi-Monte Carlo simulation. The shear strength reduction FEM is superior to the slice method based on the limit equilibrium theory in many ways, so it will be more powerful to assess the reliability of global slope stability when combined with probability theory. To illustrate the performance of the proposed method, it is applied to an example of simple slope. The results of simulation show that the proposed method is effective to perform the reliability analysis of global slope stability without presupposing a potential slip surface. 展开更多
关键词 Geotechnical properties Shear strength reduction quasi-monte carlo simulation Stochastic finite element method Global slope stability
下载PDF
基于QMC的齿轮测量中心测量不确定度评定方法 被引量:2
2
作者 韩连福 付长凤 +1 位作者 王军 唐文彦 《光学仪器》 2015年第2期111-115,共5页
为评定齿轮测量中心测量不确定度,提出了一种基于拟蒙特卡罗法(quasi Monte-Carlo method,QMC)的齿轮测量不确定度评定方法。研究了齿轮测量中心的几何误差源,应用坐标变换法建立了齿轮测量中心精密测量模型,采用拟蒙特卡罗仿真法对齿... 为评定齿轮测量中心测量不确定度,提出了一种基于拟蒙特卡罗法(quasi Monte-Carlo method,QMC)的齿轮测量不确定度评定方法。研究了齿轮测量中心的几何误差源,应用坐标变换法建立了齿轮测量中心精密测量模型,采用拟蒙特卡罗仿真法对齿轮测量中心测量不确定度进行了评定,并分析了评定的稳定性。评定实验表明,该方法可准确评定齿轮测量中心测量不确定度,评定结果最大偏差为2.35%,评定方法稳定。 展开更多
关键词 齿轮测量中心 拟蒙特卡罗法 测量不确定度
下载PDF
Convergence Analysis of a Quasi-Monte Carlo-Based Deep Learning Algorithm for Solving Partial Differential Equations
3
作者 Fengjiang Fu Xiaoqun Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第3期668-700,共33页
Deep learning has achieved great success in solving partial differential equations(PDEs),where the loss is often defined as an integral.The accuracy and efficiency of these algorithms depend greatly on the quadrature ... Deep learning has achieved great success in solving partial differential equations(PDEs),where the loss is often defined as an integral.The accuracy and efficiency of these algorithms depend greatly on the quadrature method.We propose to apply quasi-Monte Carlo(QMC)methods to the Deep Ritz Method(DRM)for solving the Neumann problems for the Poisson equation and the static Schr¨odinger equation.For error estimation,we decompose the error of using the deep learning algorithm to solve PDEs into the generalization error,the approximation error and the training error.We establish the upper bounds and prove that QMC-based DRM achieves an asymptotically smaller error bound than DRM.Numerical experiments show that the proposed method converges faster in all cases and the variances of the gradient estimators of randomized QMC-based DRM are much smaller than those of DRM,which illustrates the superiority of QMC in deep learning over MC. 展开更多
关键词 Deep Ritz method quasi-monte carlo Poisson equation static Schrodinger equation error bound
原文传递
Study on Quantum Finance Algorithm:Quantum Monte Carlo Algorithm based on European Option Pricing
4
作者 Jian-Guo Hu Shao-Yi Wu +3 位作者 Yi Yang Qin-Sheng Zhu Xiao-Yu Li Shan Yang 《Journal of Quantum Computing》 2022年第1期53-61,共9页
As one of the major methods for the simulation of option pricing,Monte Carlo method assumes random fluctuations in the distribution of asset prices.Under certain uncertainties process,different evolution paths could b... As one of the major methods for the simulation of option pricing,Monte Carlo method assumes random fluctuations in the distribution of asset prices.Under certain uncertainties process,different evolution paths could be simulated so as to finally yield the expectation value of the asset price,which requires a lot of simulations to ensure the accuracy based on huge and expensive calculations.In order to solve the above computational problem,quantum Monte Carlo(QMC)has been established and applied in the relevant systems such as European call options.In this work,both MC and QM methods are adopted to simulate European call options.Based on the preparation of quantum states in QMC algorithm and the construction of quantum circuits by simulating a quantum hardware environment on a traditional computer,the amplitude estimation(AE)algorithm is found to play a secondary role in accelerating the pricing of European options.More importantly,the payoff function and the time required for the simulation in QMC method show some improvements than those in MC method. 展开更多
关键词 Monte carlo method(MC) option pricing quantum monte carlo(qmc) amplitude estimation(AE) payoff function
下载PDF
机械强度可靠性灵敏度分析的拟蒙特卡罗法 被引量:4
5
作者 张艳林 朱丽莎 +1 位作者 张义民 张艳芳 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1594-1598,共5页
虽然蒙特卡罗方法具有程序结构简单,计算效率与问题维数无关的优点,但工程结构的失效概率往往很小,要获得精确的结果就需要大量样本,因而计算效率低.针对这一问题,采用Halton序列代替伪随机数并结合重要抽样方法,提出计算可靠性灵敏度... 虽然蒙特卡罗方法具有程序结构简单,计算效率与问题维数无关的优点,但工程结构的失效概率往往很小,要获得精确的结果就需要大量样本,因而计算效率低.针对这一问题,采用Halton序列代替伪随机数并结合重要抽样方法,提出计算可靠性灵敏度的拟蒙特卡罗法.该方法与传统蒙特卡罗法相比显著减少了样本,提高了计算效率,并且误差是确定的.以齿轮为研究对象,通过对接触疲劳可靠性及可靠性灵敏度进行分析,证实了该方法在计算效率上的优势. 展开更多
关键词 拟蒙特卡罗法 可靠性灵敏度 低偏差点集 齿轮接触疲劳 重要抽样 可靠度
下载PDF
基于拟蒙特卡罗和半不变量法的概率潮流计算 被引量:6
6
作者 万常韶 朱自伟 +2 位作者 胡洪权 黄俭平 龙鑫 《电测与仪表》 北大核心 2019年第6期32-37,共6页
为实现含风电出力电网概率潮流计算精度的提高,提出一种结合拟蒙特卡罗和半不变量的方法。建立风电出力模型,采用拟蒙特卡罗模拟法(QMCS)抽取Sobol确定性低偏差点列,结合半不变量法,算出节点状态变量以及各支路潮流的半不变量,引入Gram-... 为实现含风电出力电网概率潮流计算精度的提高,提出一种结合拟蒙特卡罗和半不变量的方法。建立风电出力模型,采用拟蒙特卡罗模拟法(QMCS)抽取Sobol确定性低偏差点列,结合半不变量法,算出节点状态变量以及各支路潮流的半不变量,引入Gram-Charlier级数,以概率潮流计算为工具,对相关节点电压进行模拟,并与传统蒙特卡罗模拟(MCS)方法和MCS结合半不变量法对比。算例表明,相同抽样次数下QMCS结合半不变量法的计算结果更接近真解,并且计算速度相对更快。 展开更多
关键词 拟蒙特卡罗 风电系统 概率潮流 半不变量法
下载PDF
障碍期权定价的一种高效蒙特卡罗方法 被引量:1
7
作者 黄慧敏 杨雪斌 杨晓忠 《中国科技论文在线精品论文》 2021年第4期440-446,共7页
针对障碍期权的定价问题,给出了一种高效的蒙特卡罗(Monte Carlo,MC)模拟方法——基于布朗桥构造路径的随机化拟蒙特卡罗(Brownian bridge path randomization quasi Monte Carlo,BBPR-QMC)方法.首先,用Faure序列代替MC方法中的随机序列... 针对障碍期权的定价问题,给出了一种高效的蒙特卡罗(Monte Carlo,MC)模拟方法——基于布朗桥构造路径的随机化拟蒙特卡罗(Brownian bridge path randomization quasi Monte Carlo,BBPR-QMC)方法.首先,用Faure序列代替MC方法中的随机序列,得到了Faure序列的拟蒙特卡罗(quasi Monte Carlo,QMC)模拟方法;其次,应用Moro算法得到了随机化拟蒙特卡罗(randomization quasi Monte Carlo,R-QMC)模拟方法;最后,将QMC方法和R-QMC方法结合,利用布朗桥技术来降低有效维,得到障碍期权定价的BBPR-QMC方法.数值试验表明,与MC方法和R-QMC方法相比较,BBPR-QMC方法模拟的价格与真实价格更接近、收敛速度更快.数值试验证实,BBPR-QMC方法是一种高效求解障碍期权定价的数值方法. 展开更多
关键词 应用数学 障碍期权定价方法 布朗桥构造路径的随机化拟蒙特卡罗(BBPR-qmc)方法 BLACK-SCHOLES方程 计算实例
下载PDF
Using QMC Simulation for American-style Call Option Pricing
8
作者 Dongsheng Zhai Kai Wang Jie Zhang 《Journal of Systems Science and Information》 2006年第1期45-51,共7页
The development of the option price theory provides business enterprise a beneficial tool to carry through property risk management, but a variety of option price theories are established on certain environments, and ... The development of the option price theory provides business enterprise a beneficial tool to carry through property risk management, but a variety of option price theories are established on certain environments, and they can not deal with crisis in uncertain environments precisely and quickly, especially when multi-factors change at the same time. Thus, price the option in uncertain environment has been becoming an important direction of research. In this paper, wc take the stock option for example~ using Quasi-Monte Carlo method to price the American-style option, and then provide an example to explain. The powerful assistant decision-making ability of the computer simulation is clearly expressed when we study and analyze the Quasi-Monte Carlo method's characteristics. 展开更多
关键词 option price quasi-monte carlo methods low discrepancy sequence
原文传递
ON THE CONVERGENCE OF SEQUENTIAL NUMBER-THEORETIC METHOD FOR OPTIMIZATION
9
作者 朱尧辰 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2001年第4期532-538,共7页
In the present note the convergence problem of the sequential number-theoretic method for optimization proposed by Fang and Wang is studied, the convergence criteria and the estimation of errors concerning this algori... In the present note the convergence problem of the sequential number-theoretic method for optimization proposed by Fang and Wang is studied, the convergence criteria and the estimation of errors concerning this algorithm are given. 展开更多
关键词 quasi-monte carlo method OPTIMIZATION CONVERGENCE estimation of error DISPERSION Lipschitz condition
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部