期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A direct product decomposition of QMV algebras
1
作者 LU Xian 1 ,SHANG Yun 1,& LU RuQian 1,2 1 Institute of Mathematics,Academy of Mathematics and Systems Science,Beijing 100190,China 2 Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China 《Science China Mathematics》 SCIE 2012年第4期841-850,共10页
We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempo- tent element of a ... We study the direct product decomposition of quantum many-valued algebras (QMV algebras) which generalizes the decomposition theorem of ortholattices (orthomodular lattices).In detail,for an idempo- tent element of a given QMV algebra,if it commutes with every element of the QMV algebra,it can induce a direct product decomposition of the QMV algebra.At the same time,we introduce the commutant C(S) of a set S in a QMV algebra,and prove that when S consists of idempotent elements,C(S) is a subalgebra of the QMV algebra.This also generalizes the cases of orthomodular lattices. 展开更多
关键词 qmv algebra COMMUTATIVITY IDEMPOTENT decomposition theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部