期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance of beacon safety message dissemination in Vehicular Ad hoc NETworks (VANETs) 被引量:4
1
作者 YOUSEFI Saleh FATHY Mahmood BENSLIMANE Abderrahim 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1990-2004,共15页
Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applicatio... Currently, there is a growing belief that putting an IEEE 802.11-like radio into road vehicles can help the drivers to travel more safely. Message dissemination protocols are primordial for safety vehicular applications. There are two types of safety messages which may be exchanged between vehicles: alarm and beacon. In this paper we investigate the feasibility of deploying safety applications based on beacon message dissemination through extensive simulation study and pay special attention to the safety requirements. Vehicles are supposed to issue these messages periodically to announce to other vehicles their current situation and use received messages for preventing possible unsafe situations. We evaluate the performance of a single-hop dissemination protocol while taking into account the quality of service (QoS) metrics like delivery rate and delay. We realize that reliability is the main concern in beacon message dissemination. Thus, a new metric named effective range is defined which gives us more accurate facility for evaluating QoS in safety applications specifically. Then, in order to improve the performance, the effects of three parameters including vehicle's transmission range, message transmission's interval time and message payload size are studied. Due to special characteristics of the safety applications, we model the relationship between communication-level QoS and application-level QoS and evaluate them for different classes of safety applications. As a conclusion, the current technology of IEEE 802.11 MAC layer has still some challenges for automatic safety applications but it can provide acceptable QoS to driver assistance safety applications. 展开更多
关键词 Safety applications Inter-vehicle communications Vehicular Ad hoc NETworks (VANETs) application level qos Effective range
下载PDF
An Efficient Internet Traffic Classification System Using Deep Learning for IoT 被引量:2
2
作者 Muhammad Basit Umair Zeshan Iqbal +3 位作者 Muhammad Bilal Jamel Nebhen Tarik Adnan Almohamad Raja Majid Mehmood 《Computers, Materials & Continua》 SCIE EI 2022年第4期407-422,共16页
Internet of Things(IoT)defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location.These IoT devices are connected to a network therefore prone... Internet of Things(IoT)defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location.These IoT devices are connected to a network therefore prone to attacks.Various management tasks and network operations such as security,intrusion detection,Quality-of-Service provisioning,performance monitoring,resource provisioning,and traffic engineering require traffic classification.Due to the ineffectiveness of traditional classification schemes,such as port-based and payload-based methods,researchers proposed machine learning-based traffic classification systems based on shallow neural networks.Furthermore,machine learning-based models incline to misclassify internet traffic due to improper feature selection.In this research,an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic.To examine the performance of the proposed technique,Moore-dataset is used for training the classifier.The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network(DNN).In particular,the maximum entropy classifier is used to classify the internet traffic.The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification,i.e.,99.23%.Furthermore,the proposed algorithm achieved the highest accuracy compared to the support vector machine(SVM)based classification technique and k-nearest neighbours(KNNs)based classification technique. 展开更多
关键词 Deep learning internet traffic classification network traffic management qos aware application classification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部