期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
基于QPSO-BP神经网络的数学学科质量评价模型
1
作者 李刚 《西安航空学院学报》 2024年第3期77-82,88,共7页
为降低BP神经网络初始权值和阈值随机选取导致的评价误差,在BP神经网络中融合QPSO算法构建数学学科质量评价模型。以19个学科质量评价二级指标为范围,基于主成分分析法提取关键指标成分,并计算二级指标贡献率,数据降维后选出累计贡献率... 为降低BP神经网络初始权值和阈值随机选取导致的评价误差,在BP神经网络中融合QPSO算法构建数学学科质量评价模型。以19个学科质量评价二级指标为范围,基于主成分分析法提取关键指标成分,并计算二级指标贡献率,数据降维后选出累计贡献率不低于85%的指标,输入BP神经网络模型;采用QPSO算法优化BP神经网络初始权值和阈值,更新了粒子位置,考虑了当前粒子局部最优位置与全局最优位置,引入“粒子平均最优位置”,强化了粒子之间的相互作用,同时利用权重系数平衡了粒子收敛能力;由此构建QPSO-BP数学学科质量评价模型,可将数学学科质量评价的效果划分为优秀、良好、中等、较差4个等级。实验结果显示,融合QPSO算法的数学学科质量评价模型可将累计贡献率达到85%的指标保留下来,且评价误差均低于预设误差0.01。该模型收敛性能较好,得出的数学学科质量评价结果符合实际情况,避免人为主观随意性,为数学学科建设提供了有效的质量反馈。 展开更多
关键词 qpso算法 BP神经网络 学科质量 权值 阈值
下载PDF
基于QPSO的密闭空间混叠冲击波的分离解算方法
2
作者 张恒冉 李剑 +3 位作者 徐利娜 魏交统 潘晋孝 孔庆珊 《火力与指挥控制》 CSCD 北大核心 2024年第9期32-39,共8页
针对在密闭空间中爆炸产生的冲击波导致混叠冲击波对内壁毁伤较为复杂的问题,提出一种分离混叠冲击波的解算方法。通过正演模拟分析密闭空间内混叠冲击波对内壁面的毁伤,得到壁面上的冲击波是多次混叠的。建立独立冲击波的全波形模型,... 针对在密闭空间中爆炸产生的冲击波导致混叠冲击波对内壁毁伤较为复杂的问题,提出一种分离混叠冲击波的解算方法。通过正演模拟分析密闭空间内混叠冲击波对内壁面的毁伤,得到壁面上的冲击波是多次混叠的。建立独立冲击波的全波形模型,并采用量子粒子群优化(QPSO)算法,对多次混叠冲击波进行分解和拟合。QPSO算法拟合出独立的冲击波,其仿真结果相较于遗传算法,均方根误差从0.2506降至0.1216,平均相对误差从0.1079%降至0.1059%。 展开更多
关键词 群智能优化算法 密闭空间 数值模拟 冲击波超压 qpso
下载PDF
Nonlinear Inversion for Complex Resistivity Method Based on QPSO-BP Algorithm 被引量:1
3
作者 Weixin Zhang Jinsuo Liu +1 位作者 Le Yu Biao Jin 《Open Journal of Geology》 2021年第10期494-508,共15页
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff... The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters. 展开更多
关键词 Complex Resistivity Finite Element Method Nonlinear Inversion qpso-BP algorithm 2.5D Numerical Simulation
下载PDF
基于QPSO-LSTM的短期风电负荷预测模型 被引量:1
4
作者 谭才兴 岳雨霏 汤赐 《中阿科技论坛(中英文)》 2023年第12期88-91,共4页
准确的风电预测可以提高电网的稳定性和可靠性,优化风电发电计划,降低能源成本。为了提高短期电力负荷预测的精度,文章探讨了一种基于QPSO算法对LSTM神经网络进行优化的算法,并根据LSTM神经网络以及QPSO算法的基本原理,利用QPSO算法对L... 准确的风电预测可以提高电网的稳定性和可靠性,优化风电发电计划,降低能源成本。为了提高短期电力负荷预测的精度,文章探讨了一种基于QPSO算法对LSTM神经网络进行优化的算法,并根据LSTM神经网络以及QPSO算法的基本原理,利用QPSO算法对LSTM的超参数及网络拓扑结构进行优化,建立QPSO-LSTM短期风电负荷预测模型。仿真结果表明,QPSO-LSTM模型较传统的LSTM模型预测精度更高,且具有更快的收敛速度。 展开更多
关键词 短期风电预测 LSTM神经网络 PSO算法 qpso算法
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:1
5
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于QPSO-RBF的瓦斯涌出量预测模型 被引量:32
6
作者 潘玉民 邓永红 +1 位作者 张全柱 薛鹏骞 《中国安全科学学报》 CAS CSCD 北大核心 2012年第12期29-34,共6页
为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适... 为了提高径向基(RBF)网络预测瓦斯涌出量的泛化能力,提出QPSO-RBF模型。该模型采用量子粒子群(QPSO)算法优化RBF网络隐层基函数中心、扩展系数以及输出权等初始参数,将网络参数编码为QPSO学习算法中的粒子个体,在全局空间中搜索最优适应值参数。其中,RBF网络选取5-3-1的精简结构,采用5个变量作为影响因子预测瓦斯涌出量。结果表明,经QPSO优化后的RBF网络模型预测结果稳定且唯一,其泛化指标平均相对变动值(ARV)为0.012 2。与PSO-RBF、RBF模型预测结果比较,QPSO-RBF模型的泛化能力和网络训练速度优于前2种;预测精度约为PSO-RBF模型的1.5倍、RBF模型的4倍。 展开更多
关键词 量子粒子群(qpso)算法 径向基(RBF) qpso-RBF模型 泛化能力 瓦斯涌出量
下载PDF
运用QPSO算法进行系统辨识的研究 被引量:15
7
作者 沈佳宁 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2009年第9期67-70,共4页
引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨... 引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨识能力和非线性系统辨识能力。 展开更多
关键词 系统辨识 量子粒子群优化算法 线性系统 非线性系统 HAMMERSTEIN模型 WIENER模型
下载PDF
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
8
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
基于QPSO方法优化求解TSP 被引量:12
9
作者 李盘荣 须文波 《计算机工程与设计》 CSCD 北大核心 2007年第19期4738-4740,共3页
针对粒子群优化算法PSO求解旅行商问题TSP收敛速度不够快的缺陷,提出利用量子粒子群优化算法QPSO求解TSP,在交换子和交换序概念的基础上,以Matlab语言为开发工具实现了TSP最佳路径的求解。实验表明改造QPSO算法用于优化求解14点的TSP,... 针对粒子群优化算法PSO求解旅行商问题TSP收敛速度不够快的缺陷,提出利用量子粒子群优化算法QPSO求解TSP,在交换子和交换序概念的基础上,以Matlab语言为开发工具实现了TSP最佳路径的求解。实验表明改造QPSO算法用于优化求解14点的TSP,能够迅速得到最优解,收敛速度加快,搜索效率得到较大水平提高;QPSO方法在求解组合优化问题中将非常有效。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 优化 旅行商问题 组合优化
下载PDF
改进QPSO和Morphin算法下移动机器人混合路径规划 被引量:17
10
作者 伍永健 陈跃东 陈孟元 《电子测量与仪器学报》 CSCD 北大核心 2017年第2期295-301,共7页
为了提高机器人在复杂环境下路径规划的能力,提出了一种基于改进量子粒子群优化算法(QPSO)和Morphin算法的混合路径规划方法。利用栅格地图建立环境模型并确定起始点和目标点,通过引入自适应局部搜索策略和交叉操作对QPSO进行改进规划... 为了提高机器人在复杂环境下路径规划的能力,提出了一种基于改进量子粒子群优化算法(QPSO)和Morphin算法的混合路径规划方法。利用栅格地图建立环境模型并确定起始点和目标点,通过引入自适应局部搜索策略和交叉操作对QPSO进行改进规划出一条最优的全局路径,机器人根据全局路径行走,当发现未知静态或动态障碍物立即调用Morphin算法进行局部路径规划,避开障碍物后回到原全局路径上继续行走至目标点。该混合路径规划方法的有效性和可行性通过Matlab仿真和实际应用得到很好地验证。 展开更多
关键词 复杂环境 移动机器人 障碍物 改进qpso Morphin算法 混合路径规划
下载PDF
基于QPSO算法的3D多模医学图像配准 被引量:4
11
作者 丁德武 李慧 +1 位作者 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2011年第26期173-176,共4页
基于互信息的配准方法具有精度高、鲁棒性强的特点。但基于互信息的目标函数存在许多局部极值,给配准的优化过程带来了很大的困难。把量子行为的粒子群优化算法(QPSO)应用到了3D医学图像配准中。QPSO不仅参数个数少,其每一个迭代步的取... 基于互信息的配准方法具有精度高、鲁棒性强的特点。但基于互信息的目标函数存在许多局部极值,给配准的优化过程带来了很大的困难。把量子行为的粒子群优化算法(QPSO)应用到了3D医学图像配准中。QPSO不仅参数个数少,其每一个迭代步的取样空间能覆盖整个解空间,因此能保证算法的全局收敛。实验结果表明,该算法能够有效地克服互信息函数的局部极值,大大提高了配准精度,与美国Vanderbilt大学的"金标准"比较,达到了亚像素级的精度。 展开更多
关键词 图像配准 互信息 量子行为的粒子群优化算法
下载PDF
基于RHC-QPSO算法的无人机动态航迹规划 被引量:3
12
作者 刘博 王小平 +2 位作者 周成 陈勇 周问 《电光与控制》 CSCD 北大核心 2020年第10期1-7,共7页
针对复杂环境下无人机的动态航迹规划问题,在量子粒子群优化算法基础上,提出一种RHC-QPSO航迹规划算法。该算法采用四叉树建立实时环境模型,以QPSO算法为基础进行无人机航迹寻优,利用卡尔曼滤波对空间中动态威胁进行轨迹预估,结合RHC方... 针对复杂环境下无人机的动态航迹规划问题,在量子粒子群优化算法基础上,提出一种RHC-QPSO航迹规划算法。该算法采用四叉树建立实时环境模型,以QPSO算法为基础进行无人机航迹寻优,利用卡尔曼滤波对空间中动态威胁进行轨迹预估,结合RHC方法,对动态威胁采取主动规避策略,选取最小化φ,ψ,θ及a为过程性能指标,并将其作为每一个滚动优化窗口的优化指标。仿真实验结果表明,该算法不仅能够实时、有效地完成具有一定先验地图知识下无人机的动态航迹规划,而且防止无人机在规划过程中为规避动态威胁进行大机动动作,在一定程度上改善了航迹平滑度,提高无人机安全性。 展开更多
关键词 无人机 动态航迹规划 RHC-qpso算法 四叉树 卡尔曼滤波 主动规避
下载PDF
基于QPSO算法的作业车间调度问题的研究 被引量:6
13
作者 冯斌 石锦风 孙俊 《计算机工程与设计》 CSCD 北大核心 2007年第23期5690-5693,5786,共5页
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量... 针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解。实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性。 展开更多
关键词 遗传算法 群体智能算法 粒子群优化算法 量子粒子群优化算法 作业车间调度问题
下载PDF
基于QPSO的单任务Agent联盟形成 被引量:7
14
作者 许波 余建平 《计算机工程》 CAS CSCD 北大核心 2010年第19期168-170,共3页
智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进... 智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进行筛选以加快粒子群的收敛速度。对比实验结果表明,该算法可以快速、高效地找出合适的Agent联盟,在运行时间和解的质量方面优于同类算法。 展开更多
关键词 AGENT联盟 量子粒子群优化算法 组合优化 多AGENT系统
下载PDF
基于QPSO的二维模糊最大熵图像阈值分割方法 被引量:8
15
作者 田杰 曾建潮 《计算机工程》 CAS CSCD 北大核心 2009年第3期230-232,共3页
针对运用图像分割方法求取阈值时存在的计算复杂、时间长、实用性差等问题,提出一种新的二维最大熵图像分割方法,该方法利用基于量子行为的微粒群算法对图像的二维阈值空间进行全局搜索,并将搜索到的二维熵最大值所对应的点灰度-区域灰... 针对运用图像分割方法求取阈值时存在的计算复杂、时间长、实用性差等问题,提出一种新的二维最大熵图像分割方法,该方法利用基于量子行为的微粒群算法对图像的二维阈值空间进行全局搜索,并将搜索到的二维熵最大值所对应的点灰度-区域灰度均值作为阈值进行图像分割。实验结果表明,该方法具有一定优越性,在执行时间与收敛性方面均得到较理想的分割效果。 展开更多
关键词 图像分割 二维模糊最大熵 量子行为的微粒群优化算法
下载PDF
融合QPSO算法的多精度布料仿真建模方法 被引量:4
16
作者 靳雁霞 王贺 +2 位作者 程思岳 张晋瑞 程琦甫 《计算机工程与应用》 CSCD 北大核心 2019年第1期154-160,共7页
在布料建模领域,如何快速模拟布料形变之后的褶皱细节是研究的热点。通过使用多精度布料建模方法,在布料的不同形变区域使用不同精度的网格,可以有效平衡建模的精度和速度,已有的工作主要是在布料形变过程中,动态计算出布料质点邻域的曲... 在布料建模领域,如何快速模拟布料形变之后的褶皱细节是研究的热点。通过使用多精度布料建模方法,在布料的不同形变区域使用不同精度的网格,可以有效平衡建模的精度和速度,已有的工作主要是在布料形变过程中,动态计算出布料质点邻域的曲率,依据人为设定的阈值,划分出布料的多精度区域,而在大部分场景中,布料的变形模式没有规律,固定不变的阈值可能会影响布料的仿真效果。针对该问题,首先将基于量子行为的粒子群算法引入建模过程,通过粒子群算法对布料表面的搜索,提高了布料弯曲部位的搜索效率,优化了多精度布料的建模速度和精度,其次针对布料仿真运动过程进行研究,参考布料受空气阻力的数学模型,以及粒子动力学中的数值积分方法,优化布料运动的仿真计算方法。实验证明,与现有布料多精度方法相比,该方法能较快检测到布料褶皱区域并判断是否需要细化,且能较好地表现出布料仿真过程中空气阻力对布料造成的形变。 展开更多
关键词 布料仿真 qpso算法 多精度布料 虚拟现实技术
下载PDF
改进的QPSO-BP算法的铀价格预测模型及应用 被引量:2
17
作者 陈建宏 周汉陵 +1 位作者 于凤玲 杨珊 《计算机工程与应用》 CSCD 2013年第21期235-239,244,共6页
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP... 铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5-11-1对铀价格进行预测。结果表明:QPSO-BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为0.002 5,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 展开更多
关键词 价格预测 量子粒子群算法 量子粒子群算法(qpso)-反向传播(BP)模型 铀价
下载PDF
Optimization method for diagnostic sequence based on improved particle swarm optimization algorithm 被引量:7
18
作者 Lian Guangyao Huang Kaoli Chen Jianhui Gao Fengqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期899-905,共7页
To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) alg... To realize the requirement of diagnostic sequence optimization in the process of design for testability, the authors put forward an optimization method based on quantum-behaved particle swarm optimization (QPSO) algorithm. By a precedence ordering coding, the diagnostic sequence optimization can be translated into a precedence ordering problem in the multidimensional space of swarm. It can get the optimizing order quickly by using the powerful and quick search capability of QPSO algorithm, and the order is the diagnostic sequence for the system. The realization of the method is simpler than other methods, and the results are more excellent than others, and it has been applied in the engineering practice. 展开更多
关键词 diagnostic sequence optimization design for testability intelligent optimization qpso algorithm
下载PDF
改进的QPSO算法在电网故障诊断系统中的应用 被引量:3
19
作者 李凤莲 李园园 +1 位作者 金铖 陈晓磊 《计算机测量与控制》 北大核心 2014年第12期3860-3863,共4页
电网故障诊断系统通常基于建立的解析模型,通过分析保护和断路器的动作信息来推断可能的故障位置,从而识别保护与断路器的故障元件和误动作;根据保护动作原理,构建了一种改进的解析模型,并采用改进的量子粒子群算法对其目标函数进行优... 电网故障诊断系统通常基于建立的解析模型,通过分析保护和断路器的动作信息来推断可能的故障位置,从而识别保护与断路器的故障元件和误动作;根据保护动作原理,构建了一种改进的解析模型,并采用改进的量子粒子群算法对其目标函数进行优化求解;该模型不仅充分考虑到了保护和断路器的误动与拒动、断路器失灵保护等问题,且能辨识告警信息的误报和漏报;实验结果表明改进的算法不仅使故障诊断结果更精确,并能使故障情况很清晰地表示出来,有利于故障的及时恢复,同时使模型的运算速度和稳定性也进一步得到了提高。 展开更多
关键词 电力系统 改进的qpso算法 故障诊断 目标函数
下载PDF
基于改进QPSO算法的双陷波超宽带天线建模 被引量:3
20
作者 刘文进 许馨水 +1 位作者 南敬昌 高明明 《传感器与微系统》 CSCD 北大核心 2022年第10期13-17,共5页
为了提高超宽带(UWB)天线的建模精度,提出一种基于改进的量子粒子群优化(QPSO)算法优化神经网络的建模方法。在QPSO算法中引入维数搜索策略,优化粒子组成,改善QPSO算法易陷入局部最优和全局收敛速度慢等问题;采用Elman神经网络作为基础... 为了提高超宽带(UWB)天线的建模精度,提出一种基于改进的量子粒子群优化(QPSO)算法优化神经网络的建模方法。在QPSO算法中引入维数搜索策略,优化粒子组成,改善QPSO算法易陷入局部最优和全局收敛速度慢等问题;采用Elman神经网络作为基础神经网络,通过改变Elman神经网络的拓扑结构并引入自反馈增益因子,提高其泛化能力,用改进后的QPSO算法优化神经网络的权值阈值,提高模型的预测精度。将该模型用于一种UWB陷波的天线建模中,对天线的电参数进行仿真建模,实验结果表明:该建模方法平均绝对误差减小98.25%,运行时间减少34.81%,具有更高的预测精度和更快的收敛速度。 展开更多
关键词 量子粒子群优化算法 ELMAN神经网络 维数搜索策略 超宽带天线
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部