In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for sa...In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for salt tolerance under the salt stress simulated with 0.5% NaCI, using survival rate as the index. The data were analyzed by QTL IciMapping v3.1, and the results showed that one QTL (QSsr3) related to salt tolerance was located in the vicinity of the marker RM1350 on chromosome 3, into a genetic interval of 113.2-132.8 cM, with a contribution rate of 17.75%. The additive effect was 10.9, indicating that the QTL derived from the parent Nipponbare improved the salt tolerance of rice at seedling stage. This study will provide a theoretical basis for the selection of salt tolerant rice germplasm.展开更多
In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with...In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.展开更多
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find...Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.展开更多
USSR5, a japonica rice variety from the former Soviet Union, is an extremely early maturing rice variety. To elucidate the genetic basis for its early heading, genetic analysis was carried out by crossing it with a se...USSR5, a japonica rice variety from the former Soviet Union, is an extremely early maturing rice variety. To elucidate the genetic basis for its early heading, genetic analysis was carried out by crossing it with a set of major gene nearly isogenic lines (NIL) and QTL-isogenic lines. The early heading of USSR5 was attributed to the presence of photoperiod-insensitive alleles at E1 and Se-1 gene, the photoperiod-sensitive inhibitor gene i-Se-1, and the dominant earliness gene Ef-1. Analysis of a backcrossed population (BCIF1) derived from the cross USSR5 x N22 indicated that two quantitative trait loci (QTL) for early heading were located on chromosomes 7 and 8, accounting for 27.4% and 11.2% of the phenotypic variance, respectively, with both early alleles originating from USSRS. From an F2 population of the same cross, early heading QTLs were detected on chromosomes 1, 2, 7, 9, and 10, with individual QTL accounting for between 4.1% and 15.4% of the phenotypic variance. Early heading alleles at four of these five QTLs originated from USSRS. A comparison of chromosomal locations suggests that one of these QTLs may be identical with the known gene Hd4 (E1). The relationship between the other QTLs and known genes for heading date are not clear. USSR5 is a promising source for propagating earliness for the development of improved early heading rice varieties.展开更多
Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative ...Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorpbic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted mark- ers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quanti- tative trait loci (QTLs) with phenotypic variation explained (PVE) values〉5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterili- ty-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construc- tion and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of in- ter-subspecies hybrid sterility and correlations with important agronomic traits in rice.展开更多
文摘In this study, a population of chromosome segment substitution lines (CSSLs) derived from the cross between 9311 (indica) and Nipponbare (japonica) was employed to map the quantitative trait loci (QTLs) for salt tolerance under the salt stress simulated with 0.5% NaCI, using survival rate as the index. The data were analyzed by QTL IciMapping v3.1, and the results showed that one QTL (QSsr3) related to salt tolerance was located in the vicinity of the marker RM1350 on chromosome 3, into a genetic interval of 113.2-132.8 cM, with a contribution rate of 17.75%. The additive effect was 10.9, indicating that the QTL derived from the parent Nipponbare improved the salt tolerance of rice at seedling stage. This study will provide a theoretical basis for the selection of salt tolerant rice germplasm.
基金Supported by Specific Fund for the Independent Innovation of Agricultural Science and Technology[CX(11)1020]~~
文摘In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.
基金Supported by the NSF of China(Grant no.31471488)State Key Laboratory of Crop Biology(2017KF03)+3 种基金Shandong Province Key Technology Innovation Project(2014GJJS0201-1)Transgenic Special Item(2016ZX08002003)National Modern Agricultural Industry System Construction Project(CARS-03-1-8)The Scholars of Taishan Seed Industry Project(2014-2019)
文摘Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.
基金This work was supported by the National Natural Science Foundation of China (No. 30571142), the 948 Project from the Ministry of Agricultue (No. 2004-Z24), Jiangsu Province High Technology Foundation (No. BG2004303), the Key Technology of Agricultural Structural Adjustment (No. 05-01-05B) and PCSIRT.
文摘USSR5, a japonica rice variety from the former Soviet Union, is an extremely early maturing rice variety. To elucidate the genetic basis for its early heading, genetic analysis was carried out by crossing it with a set of major gene nearly isogenic lines (NIL) and QTL-isogenic lines. The early heading of USSR5 was attributed to the presence of photoperiod-insensitive alleles at E1 and Se-1 gene, the photoperiod-sensitive inhibitor gene i-Se-1, and the dominant earliness gene Ef-1. Analysis of a backcrossed population (BCIF1) derived from the cross USSR5 x N22 indicated that two quantitative trait loci (QTL) for early heading were located on chromosomes 7 and 8, accounting for 27.4% and 11.2% of the phenotypic variance, respectively, with both early alleles originating from USSRS. From an F2 population of the same cross, early heading QTLs were detected on chromosomes 1, 2, 7, 9, and 10, with individual QTL accounting for between 4.1% and 15.4% of the phenotypic variance. Early heading alleles at four of these five QTLs originated from USSRS. A comparison of chromosomal locations suggests that one of these QTLs may be identical with the known gene Hd4 (E1). The relationship between the other QTLs and known genes for heading date are not clear. USSR5 is a promising source for propagating earliness for the development of improved early heading rice varieties.
基金supported by the National High Technology Research and Development Program of China (2012AA10A304, 2014AA10A602)the National Basic Research Program of China (2013CBA01402)the National Natural Science Foundation of China (U1031001)
文摘Understanding genetic characteristics in rice populations will facilitate exploring evolutionary mechanisms and gene cloning. Numerous molecular markers have been utilized in linkage map construction and quantitative trait locus (QTL) mappings. However, segregation-distorted markers were rarely considered, which prevented understanding genetic characteristics in many populations. In this study, we designed a 384-marker GoldenGate SNP array to genotype 283 recombination inbred lines (RILs) derived from 93-11 and Nipponbare Oryza sativa crosses. Using 294 markers that were highly polymorpbic between parents, a linkage map with a total genetic distance of 1,583.2 cM was constructed, including 231 segregation-distorted mark- ers. This linkage map was consistent with maps generated by other methods in previous studies. In total, 85 significant quanti- tative trait loci (QTLs) with phenotypic variation explained (PVE) values〉5% were identified. Among them, 34 QTLs were overlapped with reported genes/QTLs relevant to corresponding traits, and 17 QTLs were overlapped with reported sterili- ty-related genes/QTLs. Our study provides evidence that segregation-distorted markers can be used in linkage map construc- tion and QTL mapping. Moreover, genetic information resulting from this study will help us to understand recombination events and segregation distortion. Furthermore, this study will facilitate gene cloning and understanding mechanism of in- ter-subspecies hybrid sterility and correlations with important agronomic traits in rice.