In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was ...In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was carried out during the spring tide in October 2010 with a continuous collection of high frequency turbulence data. The data analysis shows that the hydrodynamic processes are characterized by a strong tidal bore. Statistics of the turbulence such as the probability distributions of the turbulent components, the variance terms and the covariance terms are found consistent with those of previous studies of estuaries without the tidal bore. However, along the vertical profile, the distributions of all variables become more scattered downwards. The horizontal turbulence fluctuations are of a similar magnitude while the vertical turbulence has a fluctuation magnitffde about 1/3 of that of the horizontal turbulences. The fluctuation strengths and the Reynolds stresses are much larger than those of other estuaries when the bore arrives. The bottom shear stress varies periodically with the tides, less than 0.44 N/m2 during the ebb but is increased drastically at the bore arrival, with the maximum being 0.92 N/m2. A good linear relationship is found between the bottom shear stress and the bottom suspended sediment concentration.展开更多
A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and ass...A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and associated rapid flood flows are highly turbulent flows of the upper-flow regime with a velocity over several meters per second. Reynolds (Re) and Froude (Fr) numbers, respectively, are larger than 104 and 1.0, making them significantly different from regular tidal flows but analogous to turbidity currents. Until now, understanding of tidal-bore depositional processes and products has been limited because of the difficulty and hazards involved with gauging tidal bores directly. The Qiantang bore is known as the largest breaking bore in the world. Field surveys were carried out in May 2010, along the north bank of the Qiantang Estuary to observe the occurrence of peak bores, including regular observations of current, water level and turbidity at the main channel. Several short cores were sampled on the intertidal flats to study the characteristic sedimentary features of tidal bores. Hydrodynamic and sedimentological studies show that the processes of sediment resuspension, transport and deposition are controlled primarily by the tidal bores, and the subsequent abruptly accelerated and decelerated flood flows, which only account for one tenth of each semidiurnal tidal cycle in the estuary. Tidal-bore deposits are generally poorly sorted because of rapid sedimentation after highly mixed suspension by intense turbulence. This behavior is characteristic of the absence of tractive-current depositional components in a C-M diagram. It also goes along with well-developed massive bedding, graded bedding, basal erosion structures, convolute bedding and dewatering structures. Together, these sedimentary features can constitute fingerprinting of turbidites, widely distributed in the deep-water environment. However, a tidal bore is triggered by intensely deformed tidal waves propagating into a shallow-water environment, which returns to regular tidal flows rapidly after the passage of the bore head. The tidal-bore deposits are usually bounded by the intertidal-flat deposits with typical tidal beddings at the top and on both flanks. The difference between tidal-bore deposits (TBD) and tidal sandy/muddy deposits (TSD/TMD) is evident not only in sedimentary structures, but also in the grain-size composition. They can be clearly distinguished in grain-size bivariate plots, typically the plot of mean grain size vs. standard deviation (or sorting). Some trend variations generally exist in mean grain size with TBD>TSD>TMD, sorting with TMD>TBD>TSD (larger value indicating poorer sorting), and both skewness and kurtosis with TSD>TBD>TMD. These findings will undoubtedly shed new light on our understanding of tidal-bore sedimentology, ancient tidal-bore sedimentary facies and environments, and related oil-and-gas field prospecting.展开更多
基金Project supported by the Natural Natural Science Foundation of China(Grant No.51379190,41376099)the Ministry of Water Resources’special funds for scientific research on public causes(Grant No.201001072)the Zhejiang Province Key Science and Technology Innovation Team Building Project(Grant No.2010R50035)
文摘In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was carried out during the spring tide in October 2010 with a continuous collection of high frequency turbulence data. The data analysis shows that the hydrodynamic processes are characterized by a strong tidal bore. Statistics of the turbulence such as the probability distributions of the turbulent components, the variance terms and the covariance terms are found consistent with those of previous studies of estuaries without the tidal bore. However, along the vertical profile, the distributions of all variables become more scattered downwards. The horizontal turbulence fluctuations are of a similar magnitude while the vertical turbulence has a fluctuation magnitffde about 1/3 of that of the horizontal turbulences. The fluctuation strengths and the Reynolds stresses are much larger than those of other estuaries when the bore arrives. The bottom shear stress varies periodically with the tides, less than 0.44 N/m2 during the ebb but is increased drastically at the bore arrival, with the maximum being 0.92 N/m2. A good linear relationship is found between the bottom shear stress and the bottom suspended sediment concentration.
基金supported by the National Natural Science Foundation of China (40876021 and 41076016)the State Key Lab of Marine Geology(MG200907)+2 种基金SOA Key Lab of Marine Sedimentology & Environmental Geology (MASEG200802)the Specialized Research Fund for the Doctoral Program of Higher Education (20090072110004)the Fundamental Research Funds for the Central University
文摘A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and associated rapid flood flows are highly turbulent flows of the upper-flow regime with a velocity over several meters per second. Reynolds (Re) and Froude (Fr) numbers, respectively, are larger than 104 and 1.0, making them significantly different from regular tidal flows but analogous to turbidity currents. Until now, understanding of tidal-bore depositional processes and products has been limited because of the difficulty and hazards involved with gauging tidal bores directly. The Qiantang bore is known as the largest breaking bore in the world. Field surveys were carried out in May 2010, along the north bank of the Qiantang Estuary to observe the occurrence of peak bores, including regular observations of current, water level and turbidity at the main channel. Several short cores were sampled on the intertidal flats to study the characteristic sedimentary features of tidal bores. Hydrodynamic and sedimentological studies show that the processes of sediment resuspension, transport and deposition are controlled primarily by the tidal bores, and the subsequent abruptly accelerated and decelerated flood flows, which only account for one tenth of each semidiurnal tidal cycle in the estuary. Tidal-bore deposits are generally poorly sorted because of rapid sedimentation after highly mixed suspension by intense turbulence. This behavior is characteristic of the absence of tractive-current depositional components in a C-M diagram. It also goes along with well-developed massive bedding, graded bedding, basal erosion structures, convolute bedding and dewatering structures. Together, these sedimentary features can constitute fingerprinting of turbidites, widely distributed in the deep-water environment. However, a tidal bore is triggered by intensely deformed tidal waves propagating into a shallow-water environment, which returns to regular tidal flows rapidly after the passage of the bore head. The tidal-bore deposits are usually bounded by the intertidal-flat deposits with typical tidal beddings at the top and on both flanks. The difference between tidal-bore deposits (TBD) and tidal sandy/muddy deposits (TSD/TMD) is evident not only in sedimentary structures, but also in the grain-size composition. They can be clearly distinguished in grain-size bivariate plots, typically the plot of mean grain size vs. standard deviation (or sorting). Some trend variations generally exist in mean grain size with TBD>TSD>TMD, sorting with TMD>TBD>TSD (larger value indicating poorer sorting), and both skewness and kurtosis with TSD>TBD>TMD. These findings will undoubtedly shed new light on our understanding of tidal-bore sedimentology, ancient tidal-bore sedimentary facies and environments, and related oil-and-gas field prospecting.