Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Q...Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.展开更多
Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,deg...Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.展开更多
The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), ha...The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.展开更多
The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
Qilian Mountains in Northwest China is a significant ecological security barrier due to its distinctive geographic setting,which has significant biological resource and gene pool.In order to assess the soil quality an...Qilian Mountains in Northwest China is a significant ecological security barrier due to its distinctive geographic setting,which has significant biological resource and gene pool.In order to assess the soil quality and ecosystem health in this area,we identified the structural characteristics and functional groups of soil microbial communities.This study focused on Amidongsuo,a typical watershed of the Qilian Mountains,and researched the vertical distribution and dominant populations of soil microorganisms in different habitats,and the relationship between soil microorganisms and environmental factors.Soil microorganisms from three grassland plots,five shrubland plots,and five forest plots in Amidongsuo were studied using high-throughput sequencing.The Venn diagram showed that the types of bacteria were fewer than those of fungi in Amidongsuo.Soil bacteria Acidobacteriota,Proteobacteria,and Methylomirabilota as well as fungi Basidiomycota,Ascomycota,and Mortierellomycota played dominant roles in Amidongsuo,according to the LEfSe(linear discriminant analysis(LDA)effect size)and community structure analyses.According to the ANOSIM(analysis of similarities)result,for both bacteria and fungi,R values of grassland and shrubland were small(R^(2)=0.045 and R^(2)=0.256,respectively),indicating little difference between these two ecosystems.RDA(redundancy analysis)showed a closer relationship between soil nutrients and fungi,and a gradually decreasing correlation between soil nutrients and microorganisms with increasing soil depth.Bacteria were mainly affected by pH,nitrogen(N),and potassium(K),while fungi were mainly affected by K.Overall,fungi had more effect on soil quality than bacteria.Therefore,adjustment of soil K content might improve the soil environment of Amidongsuo in the Qilian Mountains.展开更多
Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,an...Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,and solar radiation in the Qilian Mountains National Park,an arid mountainous region in Northwest China.We collected precipitation and temperature data from the National Science and Technology Infrastructure Platform,solar radiation data from the China Meteorological Forcing Dataset,and vegetation cover remote-sensing data from the Moderate Resolution Imaging Spectroradiometer.We used the vegetation sensitivity index to identify areas sensitive to climate change and to determine which climatic factors were significant in this regard.The findings revealed a high degree of heterogeneity and non-linearity of ecosystem responses to climate change.Four types of heterogeneity were identified:longitude,altitude,ecosystem,and climate disturbance.Furthermore,the characteristics of nonlinear ecosystem responses to climate change included:(1)inconsistency in the controlling climatic factors for the same ecosystems in different geographical settings;(2)the interaction between different climatic factors results in varying weights that affect ecosystem stability and makes them difficult to determine;and(3)the hysteresis effect of vegetation increases the uncertainty of ecosystem responses to climate change.The findings are significant because they highlight the complexity of ecosystem responses to climate change.Furthermore,the identification of areas that are particularly sensitive to climate change and the influencing factors has important implications for predicting and managing the impacts of climate change on ecosystems,which can help protect the stability of ecosystems in the Qilian Mountains National Park.展开更多
The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine recla...Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation.We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China.Soil properties of each site were determined(including soil water content,soil available potassium,soil available phosphorus,soil total nitrogen,pH,soil organic matter,soil total phosphorus,and soil total potassium,and soil alkali-hydrolyzable nitrogen),and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined.The results showed that the density,number of species,and diversity of the topsoil seed bank were significantly correlated with soil cover thickness,and all increased with the increment of soil cover thickness.Soil cover thickness controlled the soil seed bank by influencing soil properties.With the increase in soil cover thickness,soil properties(e.g.,soil organic matter,soil total nitrogen,etc.)content increased while soil pH decreased.The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness.Soil properties of reclaimed sites were lower than that of natural sites.The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines,as well as for the management and monitoring of reclaimed areas.展开更多
The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics ...The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.展开更多
Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the producti...Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the productivity of alpine ecosystems, due to shrubification under climate change in past decades.In this study, 14 experimental plots and 42 quadrates of the shrubs Potentilla fruticosa and Caragana jubata were selected along altitudes gradients from 3220 to 3650 m a.s.l.(above sea level) on semi-sunny and semi-shady slope in Hulu watershed of Qilian Mountains, China.The foliage, woody component and total aboveground biomass per quadrate were examined using a selective destructive method, then the biomass were estimated via allometric equations based on measured parameters for two shrub species.The results showed that C.jubata accounted for 1–3 times more biomass(480.98 g/m2) than P.fruticosa(191.21 g/m2).The aboveground biomass of both the shrubs varied significantly with altitudinal gradient(P<0.05).Woody component accounted for the larger proportion than foliage component in the total aboveground biomass.The biomass on semi-sunnyslopes(200.27 g/m2 and 509.07 g/m2) was greater than on semi-shady slopes(182.14 g/m2 and 452.89g/m2) at the same altitude band for P.fruticosa and C.jubata.In contrast, the foliage biomass on semi-shady slopes(30.50 g/m2) was greater than on semi-sunny slopes(27.51 g/m2) for two shrubs.Biomass deceased with increasing altitude for P.fruticosa, whereas C.jubata showed a hump-shaped pattern with altitude.Allometric equations were obtained from the easily descriptive parameters of height(H), basal diameter(D) and crown area(C) for biomass of C.jubata and P.fruticosa.Although the equations type and variables comprising of the best model varied among the species, all equations related to biomass were significant(P < 0.005), with determination coefficients(R2) ranging from 0.81 to 0.96.The allometric equations satisfied the requirements of the model, and can be used to estimate the regional scale biomass of P.fruticosa and C.jubata in alpine ecosystems of the Qilian Mountains.展开更多
We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limit...We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limiting factor for tree-growth. The tree rings are also significantly and positively correlated with June precipitation over large areas of the northern Tibetan Plateau (TP). The authors thus consider that the treering based drought reconstruction from 1803-2006 is representative of a large area drought history. During the reconstruction period, persistent and severe dry epochs occurred in the 1820s-1830s, 1870s-1880s, 1920s, and 1950s 1960s, and persistent wet periods were found from 1803-1810s, 1890s-1920s, and 1970s-1980s. The severe dry and wet periods are similar to those found over the northeastern TP, indicating the potential linkages of the drought regimes between them. Comparison with global SST indicates that the drought variability is closely related to the tropical Pacific and Arctic Ocean SSTs, suggesting the connection of regional moisture variations to the Asian monsoon and westerly belt circulations, respectively.展开更多
The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil wat...The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil water and nutrients, exhibits complex variability in arid desert grasslands; thus, it is essentially an impact factor for the distri- bution pattern of desert grasslands. In the present study, an investigation was conducted to estimate the spatial pattern of SOC content in desert grasslands and the association with environmental factors in the diluvial-alluvial plains of northern Qilian Mountains. The results showed that the mean values of SOC ranged from 2.76 to 5.80 g/kg in the soil profiles, and decreased with soil depths. The coefficients of variation (CV) of the SOC were high (ranging from 48.83% to 94.67%), which indicated a strong spatial variability. SOC in the desert grasslands of the study re- gion presented a regular spatial distribution, which increased gradually from the northwest to the southeast. The SOC distribution had a pattern linked to elevation, which may be related to the gradient of climate conditions. Soil type and plant community significantly affected the SOC. The SOC had a significant positive relationship with soil moisture (P〈0.05); whereas, it had a more significant negative relationship with the soil bulk density (BD) (P〈0.01). However, a number of the variations in the SOC could be explained not by the environmental factors involved in this analysis, but rather other factors (such as grazing activity and landscape). The results provide important references for soil carbon storage estimation in this study region. In addition, the SOC association with environmental variables also provides a basis for a sustainable use of the limited grassland resources in the diluvial-alluvial plains of north- ern Qilian Mountains.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China...Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.展开更多
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion or...Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.展开更多
The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the...The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.展开更多
To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted fro...To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.展开更多
With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions ...With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.展开更多
The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the ...The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ^18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions.展开更多
基金supported by Basic Research Operating Expenses of the Central level Non-profit Research Institutes (IDM2022003)National Natural Science Foundation of China (42375054)+2 种基金Regional collaborative innovation project of Xinjiang (2021E01022,2022E01045)Young Meteorological Talent Program of China Meteorological Administration,Tianshan Talent Program of Xinjiang (2022TSYCCX0003)Youth Innovation Team of China Meteorological Administration (CMA2023QN08).
文摘Tree radial growth can have significantly differ-ent responses to climate change depending on the environ-ment.To elucidate the effects of climate on radial growth and stable carbon isotope(δ^(13)C)fractionation of Qing-hai spruce(Picea crassifolia),a widely distributed native conifer in northwestern China in different environments,we developed chronologies for tree-ring widths and δ^(13)C in trees on the southern and northern slopes of the Qilian Mountains,and analysed the relationship between these tree-ring variables and major climatic factors.Tree-ring widths were strongly influenced by climatic factors early in the growing season,and the radial growth in trees on the northern slopes was more sensitive to climate than in trees on the southern.Tree-ring δ^(13)C was more sensitive to climate than radial growth.δ^(13)C fractionation was mainly influenced by summer temperature and precipitation early in the growing season.Stomatal conductance more strongly limited stable carbon isotope fractionation in tree rings than photosynthetic rate did.The response between tree rings and climate in mountains gradually weakened as climate warmed.Changes in radial growth and stable carbon isotope fractionation of P.crassifolia in response to climate in the Qilian Mountains may be further complicated by continued climate change.
基金financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23060301)the National Natural Science Foundation of China(No.41621001).
文摘Understanding temperature variability especially elevation dependent warming(EDW)in high-elevation mountain regions is critical for assessing the impacts of climate change on water resources including glacier melt,degradation of soils,and active layer thickness.EDW means that temperature is warming faster with the increase of altitude.In this study,we used observed temperature data during 1979-2017 from 23 meteorological stations in the Qilian Mountains(QLM)to analyze temperature trend with Mann-Kendall(MK)test and Sen’s slope approach.Results showed that the warming trends for the annual temperature followed the order of T_min>T_mean>T_max and with a shift both occurred in 1997.Spring and summer temperature have a higher increasing trend than that in autumn and winter.T_mean shifts occurred in 1996 for spring and summer,in 1997 for autumn and winter.T_max shifts occurred in 1997 for spring and 1996 for summer.T_min shifts occurred in 1997 for spring,summer and winter as well as in 1999 for autumn.Annual mean diurnal temperature range(DTR)shows a significant decreasing trend(-0.18°C/10a)from 1979 to 2017.Summer mean DTR shows a significant decreasing trend(-0.26°C/10a)from 1979 to 2017 with a shift occurred in 2010.After removing longitude and latitude factors,we can learn that the warming enhancement rate of average annual temperature is 0.0673°C/km/10a,indicating that the temperature warming trend is accelerating with the continuous increase of altitude.The increase rate of elevation temperature is 0.0371°C/km/10a in spring,0.0457°C/km/10a in summer,0.0707°C/km/10a in autumn,and 0.0606°C/km/10a in winter,which indicates that there is a clear EDW in the QLM.The main causes of warming in the Qilian Mountains are human activities,cloudiness,ice-snow feedback and El Nino phenomenon.
基金supported by the National Natural Science Foundation of China(No.42071057).
文摘The Qilian Mountains, a national key ecological function zone in Western China, play a pivotal role in ecosystem services. However, the distribution of its dominant tree species, Picea crassifolia (Qinghai spruce), has decreased dramatically in the past decades due to climate change and human activity, which may have influenced its ecological functions. To restore its ecological functions, reasonable reforestation is the key measure. Many previous efforts have predicted the potential distribution of Picea crassifolia, which provides guidance on regional reforestation policy. However, all of them were performed at low spatial resolution, thus ignoring the natural characteristics of the patchy distribution of Picea crassifolia. Here, we modeled the distribution of Picea crassifolia with species distribution models at high spatial resolutions. For many models, the area under the receiver operating characteristic curve (AUC) is larger than 0.9, suggesting their excellent precision. The AUC of models at 30 m is higher than that of models at 90 m, and the current potential distribution of Picea crassifolia is more closely aligned with its actual distribution at 30 m, demonstrating that finer data resolution improves model performance. Besides, for models at 90 m resolution, annual precipitation (Bio12) played the paramount influence on the distribution of Picea crassifolia, while the aspect became the most important one at 30 m, indicating the crucial role of finer topographic data in modeling species with patchy distribution. The current distribution of Picea crassifolia was concentrated in the northern and central parts of the study area, and this pattern will be maintained under future scenarios, although some habitat loss in the central parts and gain in the eastern regions is expected owing to increasing temperatures and precipitation. Our findings can guide protective and restoration strategies for the Qilian Mountains, which would benefit regional ecological balance.
基金supported by the National Key R&D Program of China(Nos.2022YFF1303301,2022YFF1302603)the National Natural Science Foundation of China(Nos.52179026,42001035,42101115)+5 种基金the Science and Technology Program of Gansu Province(Nos.22JR5RA072,22JR5RA068)the Postdoctoral Funding Program of Gansu Province(No.E339880139)the Natural Science Foundation of Gansu Province(No.E331040901)the Science and Technology Fund of Gansu Province(No.23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy(No.GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions(No.HHGCKK2204).
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金funded by the Qinghai Provincial Natural Science Foundation Project(2020-ZJ-725)the Wetland Protection and Restoration Project of the Second Batch of Forestry Reform and Development Funds in Qinghai Province,China(QHTX-2020-043-02).
文摘Qilian Mountains in Northwest China is a significant ecological security barrier due to its distinctive geographic setting,which has significant biological resource and gene pool.In order to assess the soil quality and ecosystem health in this area,we identified the structural characteristics and functional groups of soil microbial communities.This study focused on Amidongsuo,a typical watershed of the Qilian Mountains,and researched the vertical distribution and dominant populations of soil microorganisms in different habitats,and the relationship between soil microorganisms and environmental factors.Soil microorganisms from three grassland plots,five shrubland plots,and five forest plots in Amidongsuo were studied using high-throughput sequencing.The Venn diagram showed that the types of bacteria were fewer than those of fungi in Amidongsuo.Soil bacteria Acidobacteriota,Proteobacteria,and Methylomirabilota as well as fungi Basidiomycota,Ascomycota,and Mortierellomycota played dominant roles in Amidongsuo,according to the LEfSe(linear discriminant analysis(LDA)effect size)and community structure analyses.According to the ANOSIM(analysis of similarities)result,for both bacteria and fungi,R values of grassland and shrubland were small(R^(2)=0.045 and R^(2)=0.256,respectively),indicating little difference between these two ecosystems.RDA(redundancy analysis)showed a closer relationship between soil nutrients and fungi,and a gradually decreasing correlation between soil nutrients and microorganisms with increasing soil depth.Bacteria were mainly affected by pH,nitrogen(N),and potassium(K),while fungi were mainly affected by K.Overall,fungi had more effect on soil quality than bacteria.Therefore,adjustment of soil K content might improve the soil environment of Amidongsuo in the Qilian Mountains.
基金supported by the National Key Research and Development Program of China (2019YFC0507402)
文摘Ecosystem responses to climate change,particularly in arid environments,is an understudied topic.This study conducted a spatial analysis of ecosystem responses to short-term variability in temperature,precipitation,and solar radiation in the Qilian Mountains National Park,an arid mountainous region in Northwest China.We collected precipitation and temperature data from the National Science and Technology Infrastructure Platform,solar radiation data from the China Meteorological Forcing Dataset,and vegetation cover remote-sensing data from the Moderate Resolution Imaging Spectroradiometer.We used the vegetation sensitivity index to identify areas sensitive to climate change and to determine which climatic factors were significant in this regard.The findings revealed a high degree of heterogeneity and non-linearity of ecosystem responses to climate change.Four types of heterogeneity were identified:longitude,altitude,ecosystem,and climate disturbance.Furthermore,the characteristics of nonlinear ecosystem responses to climate change included:(1)inconsistency in the controlling climatic factors for the same ecosystems in different geographical settings;(2)the interaction between different climatic factors results in varying weights that affect ecosystem stability and makes them difficult to determine;and(3)the hysteresis effect of vegetation increases the uncertainty of ecosystem responses to climate change.The findings are significant because they highlight the complexity of ecosystem responses to climate change.Furthermore,the identification of areas that are particularly sensitive to climate change and the influencing factors has important implications for predicting and managing the impacts of climate change on ecosystems,which can help protect the stability of ecosystems in the Qilian Mountains National Park.
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
基金supported by the National Key Research and Development Program of China (2019YFC0507400)
文摘Reclamation of lands abandoned after mining in mountain areas is critical to erosion control,safety from landslides,and ecological protection of mountain ecosystems.However,little is known about alpine coal mine reclamation using the soil seed bank as a potential source for revegetation.We collected samples of persistent soil seed bank for germination experiments from nine reclaimed sites with different soil cover thicknesses and from six control sites in the Qilian Mountains of China.Soil properties of each site were determined(including soil water content,soil available potassium,soil available phosphorus,soil total nitrogen,pH,soil organic matter,soil total phosphorus,and soil total potassium,and soil alkali-hydrolyzable nitrogen),and the relationships of the characteristics of the soil seed bank with soil cover thickness and soil properties were examined.The results showed that the density,number of species,and diversity of the topsoil seed bank were significantly correlated with soil cover thickness,and all increased with the increment of soil cover thickness.Soil cover thickness controlled the soil seed bank by influencing soil properties.With the increase in soil cover thickness,soil properties(e.g.,soil organic matter,soil total nitrogen,etc.)content increased while soil pH decreased.The soil seed bank had the potential to restored the pre-mining habitat at reclaimed sites with approximately 20-cm soil cover thickness.Soil properties of reclaimed sites were lower than that of natural sites.The relationship between the soil seed bank and soil cover thickness determined in this study provides a foundation for improving reclamation measures used in coal mines,as well as for the management and monitoring of reclaimed areas.
基金the Doctoral Programme of Higher Education 97049119 the National Natural Science Foundation of China grant 40072062.
文摘The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.
基金funded by the National Natural Science Foundation of China(Grant Nos.91025011,91125013,41222001)the Project for Incubation of Specialists in Glaciology and Geocryology of National Natural Science Foundation of China(J1210003/J0109)
文摘Shrublands serve as an important component of terrestrial ecosystems, and play an important role in structure and functions of alpine ecosystem.Accurate estimation of biomass is critical to examination of the productivity of alpine ecosystems, due to shrubification under climate change in past decades.In this study, 14 experimental plots and 42 quadrates of the shrubs Potentilla fruticosa and Caragana jubata were selected along altitudes gradients from 3220 to 3650 m a.s.l.(above sea level) on semi-sunny and semi-shady slope in Hulu watershed of Qilian Mountains, China.The foliage, woody component and total aboveground biomass per quadrate were examined using a selective destructive method, then the biomass were estimated via allometric equations based on measured parameters for two shrub species.The results showed that C.jubata accounted for 1–3 times more biomass(480.98 g/m2) than P.fruticosa(191.21 g/m2).The aboveground biomass of both the shrubs varied significantly with altitudinal gradient(P<0.05).Woody component accounted for the larger proportion than foliage component in the total aboveground biomass.The biomass on semi-sunnyslopes(200.27 g/m2 and 509.07 g/m2) was greater than on semi-shady slopes(182.14 g/m2 and 452.89g/m2) at the same altitude band for P.fruticosa and C.jubata.In contrast, the foliage biomass on semi-shady slopes(30.50 g/m2) was greater than on semi-sunny slopes(27.51 g/m2) for two shrubs.Biomass deceased with increasing altitude for P.fruticosa, whereas C.jubata showed a hump-shaped pattern with altitude.Allometric equations were obtained from the easily descriptive parameters of height(H), basal diameter(D) and crown area(C) for biomass of C.jubata and P.fruticosa.Although the equations type and variables comprising of the best model varied among the species, all equations related to biomass were significant(P < 0.005), with determination coefficients(R2) ranging from 0.81 to 0.96.The allometric equations satisfied the requirements of the model, and can be used to estimate the regional scale biomass of P.fruticosa and C.jubata in alpine ecosystems of the Qilian Mountains.
基金supported by the National Natural Science Foundation of China In-novation Team Project(Grant No.40721061)the Na-tional Natural Science Foundation of China(Grant Nos.40671191 and 90502008)+1 种基金the Chinese 111 Project(Grant No.B06026)the One Hundred Talents Program of CAS(Grant No.29O827B11)
文摘We present a composite tree-ring chronology from two sites of Qilian Juniper (Sabina przewalskii) in the northwestern Qilian Mountains (QM), Northwestern China. Precipitation in June was found to be the main limiting factor for tree-growth. The tree rings are also significantly and positively correlated with June precipitation over large areas of the northern Tibetan Plateau (TP). The authors thus consider that the treering based drought reconstruction from 1803-2006 is representative of a large area drought history. During the reconstruction period, persistent and severe dry epochs occurred in the 1820s-1830s, 1870s-1880s, 1920s, and 1950s 1960s, and persistent wet periods were found from 1803-1810s, 1890s-1920s, and 1970s-1980s. The severe dry and wet periods are similar to those found over the northeastern TP, indicating the potential linkages of the drought regimes between them. Comparison with global SST indicates that the drought variability is closely related to the tropical Pacific and Arctic Ocean SSTs, suggesting the connection of regional moisture variations to the Asian monsoon and westerly belt circulations, respectively.
基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050406-3)National Natural Science Foundation of China (41201284 and 91125022)
文摘The soil properties in arid ecosystems are important determinants of vegetation distribution patterns. Soil organic carbon (SOC) content, which is closely related to soil types and the holding capacities of soil water and nutrients, exhibits complex variability in arid desert grasslands; thus, it is essentially an impact factor for the distri- bution pattern of desert grasslands. In the present study, an investigation was conducted to estimate the spatial pattern of SOC content in desert grasslands and the association with environmental factors in the diluvial-alluvial plains of northern Qilian Mountains. The results showed that the mean values of SOC ranged from 2.76 to 5.80 g/kg in the soil profiles, and decreased with soil depths. The coefficients of variation (CV) of the SOC were high (ranging from 48.83% to 94.67%), which indicated a strong spatial variability. SOC in the desert grasslands of the study re- gion presented a regular spatial distribution, which increased gradually from the northwest to the southeast. The SOC distribution had a pattern linked to elevation, which may be related to the gradient of climate conditions. Soil type and plant community significantly affected the SOC. The SOC had a significant positive relationship with soil moisture (P〈0.05); whereas, it had a more significant negative relationship with the soil bulk density (BD) (P〈0.01). However, a number of the variations in the SOC could be explained not by the environmental factors involved in this analysis, but rather other factors (such as grazing activity and landscape). The results provide important references for soil carbon storage estimation in this study region. In addition, the SOC association with environmental variables also provides a basis for a sustainable use of the limited grassland resources in the diluvial-alluvial plains of north- ern Qilian Mountains.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金This research was supported by the National Natural Science Foundation of China grant 49372136.
文摘Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.
基金a part of research results of a state key research project(No.G1999043200)
文摘Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.
基金National Key Project for Basic Research on Tibetan Plateau, No.2005CB422004 Knowledge Innovation Project of CAS, No.KZCX3-SW-339
文摘The objective of this study is to investigate pollen-vegetation relationship in the Qilian Mountains. The eastern Qilian Mountains are located in the transitional zone of the Tibetan Plateau, the Loess Plateau and the arid region of Northwest China; which is one of the key areas of global environmental change. A total of 13 surface pollen samples from main vegetation have been collected. Pollen percentages were calculated in all samples. In order to reveal the relationship between pollen composition and the vegetation types from which the soil samples have been collected, Detrended Correspondence Analysis (DCA) ordination method was employed on the pollen data. The results show that dominating vegetation types can be recognized by their pollen spectra: Picea crassifolia forest, alpine shrub and alpine meadow as well. Altitude and temperature determine the distribution of the surface pollen and the vegetation. The good agreement between modern vegetation and surface samples across this area provides a measure of the reliability of using pollen data to reconstruct paleoenvironment and paleovegetation patterns in this or other similar regions. However the loss of Betula pollen in forest needs further investigation. Pollen oxidation is the most important factor contributing to the damage of modern pollen in the study area. Pollen concentrations decrease with the increase of pH values of soils, and decrease sharply when the pH exceeds 7.6.
基金funded by the Youth Innovation Promotion Association,CAS(2013274)National Nature Science Foundation of China(91547102 and 41661005)+2 种基金Gansu Province Science Fund for Distinguished Young Scholars(1506RJDA282)National Key R&D Program of China(2017YFC0404305)National Natural Science Foundation Innovation Research Group Science Foundation of China(41421061)
文摘To better understand the process of precipitation and water cycle, the composition of stable isotope in precipitation and its influences by different vapor sources in the eastern of Qilian Mountains were conducted from June 2013 to May 2014. The total of 100 precipitation samples were collected in Wushaoling national meteorological station located in the eastern of Qilian Mountains. The analysis indicates that the slope of Local Meteoric Water Line is lower than that of Global Meteoric Water Line. The average values of δ18 O and δD in precipitation are higher in summer but lower in winter. Except for negative correlation with relative humidity, the stable isotope values in precipitation are positive correlations with temperature, precipitation and water vapor pressure. Influenced by water vapor source, the values of d-excess are lower for the Westerly wind and the South Asia Monsoon onJuly and the Westerly wind and the East Asia Monsoon on August, but they are higher for the Westerly wind on other months, that they are also influenced by the weather conditions in rainfall process. The variation of stable isotope in precipitation exhibited significant temperature effect, and there is also some precipitation amount effect in spring and summer.
基金supported primarily by the National Basic Research Program of China (2013CBA01806)the National Natural Sciences Foundation of China (41671029, 41690141, 41401040 and 41501040)
文摘With the popularity of the automatic precipitation gauges in national weather stations,testing their performance and adjusting their measurements are top priorities. Additionally,because different climatic conditions may have different effects on the performance of the precipitation gauges, it is also necessary to test the gauges in different areas. This study mainly analyzed precipitation measurements from the single-Altershielded TRwS204 automatic weighing gauge(TRwS_(SA)) relative to the adjusted manual measurements(reference precipitation) from the Chinese standard precipitation gauge in a doublefence wind shield(CSPG_(DF)) in the Hulu watershed in the Qilian Mountains, China. The measurements were compared over the period from August 2014 to July2017, and the transfer function derived from the work by Kochendorfer et al.(2017 a) for correcting windinduced losses was applied to the TRwS_(SA) measurements. The results show that the average loss of TRwS_(SA) measurements relative to the reference precipitation decreased from 0.55 mm(10.7%) to 0.51 mm(9.9%) for rainfall events, from 0.35 mm(8.5%)to 0.22 mm(5.3%) for sleet events, and from 0.49 mm(18.9%) to 0.33 mm(12.7%) for snowfall events after adjustment. The uncorrected large biases of TRwS_(SA) measurements are considered to be mainly caused by specific errors of TRwS_(SA), different gauge orifice area and random errors. These types of errors must be considered when comparing precipitation measurements for different gauge types, especially in the mountains.
基金supported by a West Light Program for Talent Cultivation of the Chinese Academy of SciencesGansu Province Science Foundation for Distinguished Young Scholars (No. 1506RJDA282)+3 种基金the National Natural Science Foundation (No. 91547102)the CAS/SAFEA International Partnership Program for Creative Research Teamsa postdoctoral fellowship of ZongXing Li in the International Exchange Plans from the China Postdoctoral Association (No. 20140043)the Youth Innovation Promotion Association, CAS (No. 2013274)
文摘The sub-cloud evaporation effect refers to the evaporation process for raindrops that fall from the cloud base to the ground, which is usually accompanied by depleted light isotopes and enriched heavy isotopes in the precipitation. Based on 461 event-based precipitation samples collected from 12 weather stations in the Qilian Mountains and the Hexi Corridor from May to August of 2013, our results indicated that sub-cloud evaporation has a great influence on the δ^18O of precipitation, especially in small-amount precipitation events. In May, June, July, and August the δ18O composition was enriched by 35%, 26%, 39%, and 41%, respectively, from the cloud base to the ground. This influence clearly strengthened with temperature rise, from the Qilian Mountains to the Hexi Corridor. When falling raindrops are evaporated by 1.0% in the Qilian Mountains and the Hexi Corridor, the composition of δ18O would be enriched by 1.2% and 2.6%, respectively. Temperature dominated the sub-cloud evaporation in the Qilian Mountains, whereas relative humidity controlled it in the Hexi Corridor. These results provide new proofs of the evolutional process of stable isotopes in precipitation in arid regions.