Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed ...Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.展开更多
基金The National High Technology Research and Development Program of China under contract No.2007AA09Z117the Science and Technology Project of the North China Sea Brach of SOA under contract No.2012A01the Joint BMBF-WTZ Project of China under contract No. CHN 09/031
文摘Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.