期刊文献+
共找到5,375篇文章
< 1 2 250 >
每页显示 20 50 100
Origin of the Dashuigou independent tellurium deposit at Qinghai–Xizang Plateau: constraints from the light stable isotopes C, O, and H
1
作者 Jianzhao Yin Yuhong Chao +2 位作者 Haoyu Yin Hongyun Shi Shoupu Xiang 《Acta Geochimica》 EI CAS CSCD 2024年第2期385-398,共14页
By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)... By studying the light isotopic compositions of carbon,oxygen,and hydrogen,combined with previous research results on the ore-forming source of the deposit,the authors try to uncover its metallogenic origin.The δ^(18)O and δ^(13)C isotope signatures of dolomite samples vary between 10.2 and 13.0‰,and between−7.2 and−5.2‰,respectively,implying that the carbon derives from the upper mantle.δD and δ^(18) O of quartz,biotite,and muscovite from diff erent ore veins of the deposit vary between−82 and−59‰,and between 11.6 and 12.4‰,respectively,implying that the metallogenic solutions are mainly magmatic.According to the relevant research results of many isotope geologists,the fractionation degree of hydrogen isotopes increases as the depth to the Earth’s core increases,and the more diff erentiated the hydrogen isotopes are,the lower their values will be.In other words,mantle-derived solutions can have extremely low hydrogen isotope values.This means that the δD‰ value−134 of the pyrrhotite sample numbered SD-34 in this article may indicate mantle-derived oreforming fl uid of the deposit.The formation of the Dashuigou tellurium deposit occurred between 91.71 and 80.19 Ma. 展开更多
关键词 Carbon oxygen and hydrogen isotopes ORIGIN Independent tellurium deposit The qinghaixizang Plateau
下载PDF
Quantification of the concrete freeze–thaw environment across the Qinghai–Tibet Plateau based on machine learning algorithms
2
作者 QIN Yanhui MA Haoyuan +3 位作者 ZHANG Lele YIN Jinshuai ZHENG Xionghui LI Shuo 《Journal of Mountain Science》 SCIE CSCD 2024年第1期322-334,共13页
The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering ma... The reasonable quantification of the concrete freezing environment on the Qinghai–Tibet Plateau(QTP) is the primary issue in frost resistant concrete design, which is one of the challenges that the QTP engineering managers should take into account. In this paper, we propose a more realistic method to calculate the number of concrete freeze–thaw cycles(NFTCs) on the QTP. The calculated results show that the NFTCs increase as the altitude of the meteorological station increases with the average NFTCs being 208.7. Four machine learning methods, i.e., the random forest(RF) model, generalized boosting method(GBM), generalized linear model(GLM), and generalized additive model(GAM), are used to fit the NFTCs. The root mean square error(RMSE) values of the RF, GBM, GLM, and GAM are 32.3, 4.3, 247.9, and 161.3, respectively. The R^(2) values of the RF, GBM, GLM, and GAM are 0.93, 0.99, 0.48, and 0.66, respectively. The GBM method performs the best compared to the other three methods, which was shown by the results of RMSE and R^(2) values. The quantitative results from the GBM method indicate that the lowest, medium, and highest NFTC values are distributed in the northern, central, and southern parts of the QTP, respectively. The annual NFTCs in the QTP region are mainly concentrated at 160 and above, and the average NFTCs is 200 across the QTP. Our results can provide scientific guidance and a theoretical basis for the freezing resistance design of concrete in various projects on the QTP. 展开更多
关键词 Freeze–thaw cycles Quantification Machine learning algorithms qinghaitibet Plateau CONCRETE
下载PDF
Spatial-temporal heterogeneity of ecological quality changes across the Qinghai-Tibet Plateau under the influence of climate factors and human activities
3
作者 ZiPing Zhang YuWei Cui +1 位作者 WenJia Tang Sen Li 《Research in Cold and Arid Regions》 CSCD 2024年第3期129-140,共12页
Over the last few decades,the ecological quality of the Qinghai–Tibet Plateau(QTP)has significantly changed due to climate warming,humidification,and increasing human activities.Thus,evaluating this region's ecol... Over the last few decades,the ecological quality of the Qinghai–Tibet Plateau(QTP)has significantly changed due to climate warming,humidification,and increasing human activities.Thus,evaluating this region's ecological quality and dominant factors is crucial for sustainable development.In this study,the changes in the ecological quality on the QTP from 2000 to 2020 were evaluated based on aggregated indices and Sen–MK trend analyses,and the dominant factors affecting the ecological quality of the QTP were quantitatively analyzed using decision tree classification.The results revealed that(1)the ecological quality of the QTP exhibited an overall high trend in the east and a low pattern in the west;(2)the ecological quality of the QTP significantly increased from 2000 to 2020,and human activities were the dominant factors causing this change;and(3)the changes in the ecological quality and dominant factors exhibited obvious spatiotemporal heterogeneity.The area with an improved ecological quality occurred mainly in the northern QTP region.It was governed by human activities and precipitation.In contrast,the area with a deteriorated ecological quality occurred largely in the southern QTP region and was dominated by human activities and temperature.The 2000–2010 period was the most significant period of heterogeneity regarding of ecological quality and its driving factors.(4)The change in the ecological quality was mainly affected by the synergistic relationship between human activities and climate change in this region,which encompassed multiple dominant factors.This study provides important information on the spatiotemporal heterogeneity of ecological quality change and its dominant factors on the QTP and offers systematic guidance for the planning and implementation of ecological protection projects. 展开更多
关键词 Remote sensing-based ecological index(RSEI) Dominant factors Synergies and trade-offs qinghaitibet Plateau
下载PDF
Interannual Variability of Atmospheric Heat Source/ Sink over the Qinghai-Xizang (Tibetan) Plateau and its Relation to Circulation 被引量:26
4
作者 赵平 陈隆勋 +1 位作者 Zhao Ping Chen Longxun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第1期106-116,共11页
Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data,... Based on the 1961-1995 atmospheric apparent heat source/sink and the 1961-1990 snow-cover days and depth over the Qinghai-Xizang Plateau (QXP) and the 1961-1995 reanalysis data of NCEP/NCAR and the 1975-1994 OLR data, this paper discusses the interannual variability of the heat regime and its relation to atmospheric circulation It is shown that the interannual variability is pronounced, with maximal variability in spring and autumn, and the variability is heterogeneous horizontally. In the years with the weak (or strong) winter cold source, the deep trough over East Asia is to the east (or west) of its normal, which corresponds to strong (or weak) winter monsoon in East Asia. In the years with the strong (or weak) sum mer heat source, there exists an anomalous cyclone (or anticyclone) in the middle and lower troposphere over the QXP and ifs neighborhood and anomalous southwest (or northeast) winds over the Yangtze River valley of China, corresponding to strong (or weak) summer monsoon in East Asia. The summer heat source of the QXP is related to the intensity and position of the South Asia high. The QXP snow cover condition of April has a close relation to the heating intensity of summer. There is a remarkable negative correlation between the summer heat source of the QXP and the convection over the southeastern QXP, the Bay of Bengal, the Indo-China Peninsula, the southeastern Asia, the southwest part of China and the lower reaches of the Yangtze River and in the area from the Yellow Sea of China to the Sea of Japan. 展开更多
关键词 qinghai-xizang Plateau apparent heat source/sink snow cover OLR
下载PDF
LAST GLACIATION AND MAXIMUM GLACIATION IN THE QINGHAI-XIZANG (TIBET) PLATEAU: A CONTROVERSY TO M. KUHLE,S ICE SHEET HYPOTHESIS 被引量:4
5
作者 施雅风 郑本兴 李士杰 《Chinese Geographical Science》 SCIE CSCD 1992年第4期3-21,共19页
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recogn... Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during 展开更多
关键词 QUATERNARY GLACIATION dispersed MOUNTAIN glaciers the qinghai-xizang PLATEAU
下载PDF
Petrogenesis of the Cenozoic Volcanic Rocks from the Northern Part of Qinghai-Xizang (Tibet) Plateau 被引量:4
6
作者 赖绍聪 《Chinese Journal Of Geochemistry》 EI CAS 1999年第4期361-371,共11页
Based on electron probe analyses of the minerals and bulk composition of the Cenozoic volcanic rocks from Yumen and Hoh Xil lithodistricts, Qinghai\|Xizang plateau, the forming conditions including the temperature and... Based on electron probe analyses of the minerals and bulk composition of the Cenozoic volcanic rocks from Yumen and Hoh Xil lithodistricts, Qinghai\|Xizang plateau, the forming conditions including the temperature and pressure of those rocks are studied in this paper. According to the thermodynamic calculation results of mineral\|melt equilibrium, the depth of the asthenosphere superface (about 75-130 km) for the northern part of the Qinghai\|Xizang plateau during the Cenozoic is suggested. Finally, this paper indicates that the Cenozoic volcanic rocks in the northern part of the Qinghai\|Xizang plateau mainly consist of shoshonite series. Their forming temperature is 630-1039℃ and forming pressure is between 2.3-4.0 GPa. The rocks were formed in the intracontinental orogenic belt, of which the primary magma was originated from a particular enrichment upper mantle and accreted crust\|mantle belt or directly from asthenospheric superface as a result of partial melting of pyrolite. 展开更多
关键词 新生代 火山岩 青海 西藏 岩石成因
下载PDF
A NEW INTERPRETATION OF THE EVOLUTION OF THE TETHYS CRUSTOBODY AND THE PETROLEUM POTENTIAL OF THE QINGHAI-XIZANG (TIBET) PLATEAU 被引量:1
7
作者 TONG Yuming and XIE Zhengkang(Changsha Institute of Geotectonics, Academth Sinica, Changsha, 410013,China)(Qinghai-Xizang Plateau Petroleum Geological Institute, Changsha, 410117,China) 《Geotectonica et Metallogenia》 1997年第Z2期33-42,共10页
Although large amounts of data have been collected during the past 30 yesrs in the study of the formation, evolution and dynamics of the Tethys Sea by the use of the theory of plate tectonics, a large volume of geolog... Although large amounts of data have been collected during the past 30 yesrs in the study of the formation, evolution and dynamics of the Tethys Sea by the use of the theory of plate tectonics, a large volume of geological and geophysical information has also been accumulated which cannot be explained by the plate tectonic hypothesis. For example, the Qinghai-Xizang Plateau is underlain by many thousands of meters of Ordovician through Eocene, gently-dipping, essentially undeformed, stable platform sequences. Stratigraphic and tectonic investigations reveal that the plateau-wide east-west fracture zones, interpreted as "sutures" in a plate-tectonic model, are not sutures at all. On the other hand, from the Late Carboniferous to the beginning of the Early Permian, it was impossible for the Tethys ocean with a width of several thousand kilometers to."open" and "close" (the speed could not be so great). The east-west fracture zones, with very sharp angles, exerted no control over deposition. Stress analysis of magmatic activity indicates that the Himalayan zone is presently under compression, the Gangdise zone under interwoven comprepsion and tension, and the Qinghai and Deccan Plateaus under weak tension. Lateral compression caused by weak tension at the northern and southern terminations was not enough for Xizang and its surroundings between India and Qinghai Province of China with an area of 2,400,000 km2 to rise to a height of 4,000 m above mean sea level. The authors believe that surge tectonics is the force driving the evolution of the Tethys Sea and the rising of the Qinghai-Xizang Plateau. G. G. T. demonstrates that two surge channels, an upper and a lower, exist in the Yadong-Anduo litho sphere, and the upper mantle in the southern part is uplifted. During the Eocene, as a result of tectogenesis, molten magma poured out from the channel along the Yarlung Zangbo River,forming ophiolites and melanges, and earthquakes and terrestrial heat are also distributed along the fracture zone. Likewise, at an earlier time the Banggong Co-Nujiang and Longmu Co-Yushu Jinshajiang surge channels and their fracture zones formed. During the Miocene, the three surge channels merged laterally, and then the unified rise of the Qinghai-Xizang Plateau took place. The formation and evolution of the surge channels resulted in a variety of worthy Paleozoic, Mesozoic and Cenozoic exploration targets and a series of sedimentary basins with the largest Qamdo Basin occupying 120, 000 km2 with sediments attaining a thickness of 15, 000 m. These basins contain multiple source-beds, reservoirs, traps and seals of different ages, showing oil and gas every-where. In the northern part lithology and facies are more stable than in the southern, and subsequent tectonic overprinting and volcanic activity are relatively weak. At present commercial oil flow has been penetrated by drilling in the Tertiary Lunpola Basin. 展开更多
关键词 TETHYS crustobody qinghai-xizang (tibet) PLATEAU SURGE channel PETROLEUM potential
下载PDF
A PRELIMINARY STUDY ON TRE ZONE OF ALPINE SCRUB AND MEADOW OF QINGHAI-XIZANG (TIBETAN) PLATEAU 被引量:3
8
作者 Zheng Du(Institute of Geography, CAS, Beijing 100101People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1996年第3期28-38,共11页
The zone of alpine scrub and meadow, characterized by highlandsubpolar humid/subhumid climate, is a transitional area from deep gorges to theplateau proper.The natural zone is unique in physical environments and natur... The zone of alpine scrub and meadow, characterized by highlandsubpolar humid/subhumid climate, is a transitional area from deep gorges to theplateau proper.The natural zone is unique in physical environments and naturalecosystems, and could not be found at the lowlands elsewhere on the earth.Thepredominant type of vegeation is alpine meadow, including Kobresia meadow,herbaceous meadow and swampy meadow. It is an important pasturelands ofanimal husbandry for Tibetan on the plateau. Main vegetion types, animal groups,characteristics of alpine meadow soils, the altitudinal belt and the horizontalzonality of the natural zone, as well as utilization and management of the grasslandsare discussed in the present paper. 展开更多
关键词 natural zone alpine scrub and meadow qinghai-xizang Plateau
下载PDF
Contribution of external forcing to summer precipitation trends over the Qinghai-Tibet Plateau and Southwest China
9
作者 Yuying Xiang Tao Wang +1 位作者 Hongna Xu Huijun Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期29-34,共6页
在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而... 在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而中国西南地区的夏季降水呈减少趋势,这两个相邻地区的夏季降水变化趋势相反.利用CMIP6数据,本文研究了不同外强迫因子对两个区域夏季降水趋势的影响.结果表明,温室气体对青藏高原夏季降水的增加具有显著影响,而气溶胶在中国西南地区夏季降水减少中起主要作用。 展开更多
关键词 夏季降水 青藏高原 中国西南 CMIP6 外强迫因子
下载PDF
A Numerical Case Study on a Mesoscale Convective System over the Qinghai-Xizang (Tibetan) Plateau 被引量:2
10
作者 朱国富 陈受钧 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期385-397,共13页
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are... A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are inspiring and are as follows. (1) The model simulates well the largescale conditions in which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang Plateau High in the upper layers and the strong thermal forcing in the lower layers. In particular, the model captures the meso-&#945; scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPa observational winds; and to some degree, the model reproduces even its meso-&#946; scale substructure similar to satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there are some distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hours and a westward deviation of 3–5° longitude. (2) The structure and evolution of the meso-&#945; scale vortex associated with the MCS are undescribable for upper-air sounding data. The vortex is confined to the lower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of 4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraft over it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. It lasts for 3–6 hours. In its processes of both formation and decay, the change in geopotential height field is prior to that in the wind field. It follows that the vortex is closely associated with the thermal effects over the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of various surface thermal forcings and other physical processes on the MCS over the plateau. The results indicate that under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainly dominated by the low-level thermal forcing. The simulation described here is a good indication that it may be possible to reproduce the MCS over the plateau under certain large-scale conditions and with the incorporation of proper thermal physics in the lower layers. 展开更多
关键词 qinghai-xizang (tibetan) Plateau mesoscale convective system (MCS) numerical simulation
下载PDF
Analysis and Comparison of Mesoscale Convective Systems over the Qinghai-Xizang (Tibetan) Plateau 被引量:2
11
作者 朱国富 陈受钧 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第3期311-322,共12页
A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery,... A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs. 展开更多
关键词 qinghai-xizang (tibetan) Plateau mesoscale convective system (MCS) convective available potential energy (CAPE)
下载PDF
Present-day tectonic movement in the northeastern margin of the Qinghai-Xizang (Tibetan) plateau as revealed by earthquake activity 被引量:1
12
作者 许忠淮 汪素云 高阿甲 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2000年第5期507-515,共9页
Characteristics of present-day tectonic movement in the northeastern margin of Qinghai-Xizang plateau (Tibetan) are studied based on earthquake data. Evidence of earthquake activity shows that junctures between blocks... Characteristics of present-day tectonic movement in the northeastern margin of Qinghai-Xizang plateau (Tibetan) are studied based on earthquake data. Evidence of earthquake activity shows that junctures between blocks in this area consist of complicated deformation zones. Between the Gansu-Qinghai block and Alxa block there is a broad compressive deformation zone, which turns essentially to be a network-like deformation region to the southeast. The Liupanshan region, where the Gansu-Qinghai block contacts the Ordos block, is suffering from NE-SW compressive deformation. Junction zone between the Ordos and Alxa block is a shear zone with sections of variable trend. The northwestern and southeastern marginal region of the Ordos is under NNW-SSE extension. The above characteristics of present-day tectonic deformation of the northeastern Qinghai-Xizang plateau may be attributed to the northeastward squeezing of the plateau and the resistance of the Ordos block, as well as the southeastward extrusion of the plateau materials. 展开更多
关键词 northeastern qinghai-xizang (tibetan) plateau tectonic movement earthquake
下载PDF
Cu-Ni-PGES MINERALIZATION OF MELANOCRATIC ROCKS IN SOUTHEAST MARGIN OF THE QINGHAI-XIZANG(TIBET) PLATEAU, HKT
13
作者 Cao Zhimin 1, Luo Yaonan 2, Li Youguo 1, Song Xieyan 1, Chen Cuihua 1, Yang Zhusheng 2, He Hong 2 2 Sichuan Bureau of geology and Mineral Resources, Chengdu 610081,China) 《地学前缘》 EI CAS CSCD 2000年第S1期415-415,共1页
The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies,... The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened. 展开更多
关键词 Cu\|Ni\|PGEs MINERALIZATION Province melanocratic ROCKS em eishan basalt basic\|ultrabasic complex SOUTHEAST MARGIN the qinghai —xizang(tibet) PLATEAU HKT
下载PDF
EVOLUTION AND DIFFERENTIATION OF THE PHYSICO-EOGRAPHICAL ENVIRONMENT OF THE QINGHAI-XIZANG (TIBETAN) PLATEAU 被引量:1
14
作者 Zheng Du Li BinGyuan(InstitUte of Geography, CAS, BejiNg 100101People’s Repubilc of CHina) 《Journal of Geographical Sciences》 SCIE CSCD 1994年第Z1期34-47,共14页
The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at ... The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at low altitude to frigidenvironment at high altitude of the region since Pliocene and thechanges effected by cold-warm amplitude bf global change. Bycomparative study on the structure-type of the altitudinal belt, adistributional model diagram with close relevance to highlanduplift effect has been generalized. Based on regjonaldifferentiation of the Qinghai-Xizang Plateau, a number ofstriking geo-ecological phenomena such as moisture corridor, dryvalleys and high cold-arid core area are investigated anddiscussed. 展开更多
关键词 paleogeographical environmental evolution structure-type altitudinal belt physical regional differentiation qinghai-xizang Plateau
下载PDF
RATIONAL UTILIZATION OF MOUNTAIN SOILS IN SOUTHEAST QINGHAI-XIZANG (TIBETAN) PLATEAU
15
作者 Li Mingsen(Commission for Intngated Survey of Natural Resources, CAS, Bejing 100101 People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1996年第4期38-44,共7页
The southeast Qinghaicozang (Tibetan) Plateau is a physcal mpon ofvery complicated eco-envirorunent with optimum hydrothermal conditions. Thisregon conains not ouly vast expanse of alpine soils but also abounds in mos... The southeast Qinghaicozang (Tibetan) Plateau is a physcal mpon ofvery complicated eco-envirorunent with optimum hydrothermal conditions. Thisregon conains not ouly vast expanse of alpine soils but also abounds in mosttypes of Chinese forest soils. The distributon and tallization of soils presents avery evident horizontal-vertical zonality. At present, panial soil resources arebeing damaged and the mountain ecology also tends to be instable. So rationalcuttin and forest conservation, barren mountain afferestation, retuming thecultivated land on stop slopes to forest, controlled graking, and soil ameliorationconstitute importan means for rational use of soil resources and improvement andstabilization of mountain ecology in tyis region 展开更多
关键词 mountain ecology soil types qinghai-xizang (tibetan) Plateau
下载PDF
MECHANISM AND HISTORICAL BACKGROUND OF THE UPLIFT OF THE QINGHAI-XIZANG(TIBET) PLATEAU
16
作者 CHEN Guoda(Changsha Institute of Geotectonics, Academia Sinica, Changsha, 410013, Hunan, China) 《Geotectonica et Metallogenia》 1997年第Z1期1-18,共18页
The uplift of the Qinghai-Xizang (Tibet) Plateau happened in a different crustal movementsand different time from those of the collision of Asia continent with the allochthonous India crusto-body, and the uplift occur... The uplift of the Qinghai-Xizang (Tibet) Plateau happened in a different crustal movementsand different time from those of the collision of Asia continent with the allochthonous India crusto-body, and the uplift occurred very long after the finish of the collision. In fact, there are no direct-ly causationic relationships in time and dynamics, as well as in crustobody movement nature be-tween the uplift and collision. According to its temporal evolution, the uplift happened in anotheractive stage of the mantle creep flow after the active stage resulting in the collision and the inter-ruption of the 140 Ma’s quiet stage-particularly noticeably after this interruption of quiet stage-resulting in the universal Qinghai-Xizang (Tibet) ancient platform. On the basis of the dynamicanalysis, the uplift resulted from the multiple compressing stresses in the reactivation stage afterweakening of the colliding stress and the following compressing stress, and after the interruptionof the stable stage dominating the vertical movements and represented by fomation of the universalQinghai-Xizang (Tibet) ancient platform. It was the production of another stress field existing inanother crustobody evolution stage and growth age. In the light of the nature of the orogeny, theuplift was caused by the intracontinental diwa (geodepression)-type orogeny after converging con-nection of the Centra1 Asia Crustobody and the India Crustobody.Because of the big temporal difference between the uplift and collision events, the so-calleddouble-crust hypothesis of the Qinghai-Xizang (Tibet) Plateau may not be realistic. 展开更多
关键词 HISTORICAL background UPLIFT MECHANISM qinghai-xizang PLATEAU
下载PDF
Investigation and Exploitation of New Medicinal Resources of Genus Bupleurum (Umbelliferae) in Qinghai Province and Xizhang (Tibet) Autonomous Region in China 被引量:1
17
作者 李颖 郭济贤 +1 位作者 潘胜利 罗达尚 《Journal of Chinese Pharmaceutical Sciences》 CAS 1993年第1期38-44,共7页
In China,some species of Bupleurum (family Umbelliferae) have been used as Chinese traditional medicine under the name “Chai-Hu” for the treatment of fevers and influenza.In the present paper,the authors report a st... In China,some species of Bupleurum (family Umbelliferae) have been used as Chinese traditional medicine under the name “Chai-Hu” for the treatment of fevers and influenza.In the present paper,the authors report a study on the investigation and exploitation of new medicinal resources of “Chai-Hu” in Qinghai Province and Xizang (Tibet) Autonomous Region where no one has studied this hitherto.18 species,7 varieties,I form of Bupleurum and a new species (Bupleurum qinghaiense) have been discovered.The taxonomy and preliminary phytochemical studies of the roots of three medicinal plants,B.qinghaiense,B.rnarginatum var.stenophyllum and B.smithii var.parvifolium.are reported in this paper. 展开更多
关键词 Bupleurum qinghaiense Bupleurum smithii var parvifolium Bupleurum marginatum var stenophyllum Bupleurum spp in qinghai and xizang
下载PDF
“Tibet”或“Xizang”——关于“西藏”英译的讨论 被引量:5
18
作者 王鹿鸣 《西藏研究》 北大核心 2014年第5期102-106,共5页
西藏英文翻译采用汉语拼音Xizang取代Tibet,能够更准确地表达西藏作为地名的真实含义,符合国家地名翻译的规范标准,获得国际上中国的文化话语权,抵制十四世达赖分裂集团提出"大藏区"分裂祖国的图谋。
关键词 tibet xizang 西藏英译
下载PDF
Review of numerical simulation on the dy-namics of Qinghai-Xizang plateau 被引量:3
19
作者 陆诗阔 蔡永恩 《地震学报》 CSCD 北大核心 2004年第5期547-559,共13页
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli... In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied. 展开更多
关键词 青藏高原 动力学过程 数值模型
下载PDF
Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai–Tibet Plateau of China from 2000 to 2015 被引量:16
20
作者 GUO Bing ZANG Wenqian +8 位作者 YANG Fei HAN Baomin CHEN Shuting LIU Yue YANG Xiao HE Tianli CHEN Xi LIU Chunting GONG Rui 《Journal of Arid Land》 SCIE CSCD 2020年第1期1-17,共17页
The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we a... The vegetation ecosystem of the Qinghai–Tibet Plateau in China,considered to be the′′natural laboratory′′of climate change in the world,has undergone profound changes under the stress of global change.Herein,we analyzed and discussed the spatial-temporal change patterns and the driving mechanisms of net primary productivity(NPP)in the Qinghai–Tibet Plateau from 2000 to 2015 based on the gravity center and correlation coefficient models.Subsequently,we quantitatively distinguished the relative effects of climate change(such as precipitation,temperature and evapotranspiration)and human activities(such as grazing and ecological construction)on the NPP changes using scenario analysis and Miami model based on the MOD17A3 and meteorological data.The average annual NPP in the Qinghai–Tibet Plateau showed a decreasing trend from the southeast to the northwest during 2000–2015.With respect to the inter-annual changes,the average annual NPP exhibited a fluctuating upward trend from 2000 to 2015,with a steep increase observed in 2005 and a high fluctuation observed from 2005 to 2015.In the Qinghai–Tibet Plateau,the regions with the increase in NPP(change rate higher than 10%)were mainly concentrated in the Three-River Source Region,the northern Hengduan Mountains,the middle and lower reaches of the Yarlung Zangbo River,and the eastern parts of the North Tibet Plateau,whereas the regions with the decrease in NPP(change rate lower than–10%)were mainly concentrated in the upper reaches of the Yarlung Zangbo River and the Ali Plateau.The gravity center of NPP in the Qinghai–Tibet Plateau has moved southwestward during 2000–2015,indicating that the increment and growth rate of NPP in the southwestern part is greater than those of NPP in the northeastern part.Further,a significant correlation was observed between NPP and climate factors in the Qinghai–Tibet Plateau.The regions exhibiting a significant correlation between NPP and precipitation were mainly located in the central and eastern Qinghai–Tibet Plateau,and the regions exhibiting a significant correlation between NPP and temperature were mainly located in the southern and eastern Qinghai–Tibet Plateau.Furthermore,the relative effects of climate change and human activities on the NPP changes in the Qinghai–Tibet Plateau exhibited significant spatial differences in three types of zones,i.e.,the climate change-dominant zone,the human activity-dominant zone,and the climate change and human activity interaction zone.These research results can provide theoretical and methodological supports to reveal the driving mechanisms of the regional ecosystems to the global change in the Qinghai–Tibet Plateau. 展开更多
关键词 NPP gravity center model driving mechanisms global change human activities qinghaitibet Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部