期刊文献+
共找到13,548篇文章
< 1 2 250 >
每页显示 20 50 100
Contribution of external forcing to summer precipitation trends over the Qinghai-Tibet Plateau and Southwest China
1
作者 Yuying Xiang Tao Wang +1 位作者 Hongna Xu Huijun Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第5期29-34,共6页
在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而... 在过去的60年中,全球气候经历了快速变暖和短暂的变暖停滞,而中国的区域降水也经历了多样而复杂的变化.本文分析了1961年至2014年外强迫因子对青藏高原和中国西南地区夏季降水趋势的影响.观测数据显示,青藏高原的夏季降水呈增加趋势,而中国西南地区的夏季降水呈减少趋势,这两个相邻地区的夏季降水变化趋势相反.利用CMIP6数据,本文研究了不同外强迫因子对两个区域夏季降水趋势的影响.结果表明,温室气体对青藏高原夏季降水的增加具有显著影响,而气溶胶在中国西南地区夏季降水减少中起主要作用。 展开更多
关键词 夏季降水 青藏高原 中国西南 CMIP6 外强迫因子
下载PDF
Land cover change along the Qinghai-Tibet Highway and Railway from 1981 to 2001 被引量:15
2
作者 DING Mingkun ZHANG Yili +5 位作者 SHEN Zhenx LIU Linshan ZHANG Wei WANG Zhaofeng BAI Wanqi ZHENG Du 《Journal of Geographical Sciences》 SCIE CSCD 2006年第4期387-395,共9页
Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indic... Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover. 展开更多
关键词 Tibetan Plateau qinghai-Tibet Highway qinghai-Tibet Railway land cover change NDVI
下载PDF
Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau 被引量:2
3
作者 Xia Zhao JunFeng Wang +6 位作者 Yun Wang Xiang Lu ShaoFang Liu YuBao Zhang ZhiHong Guo ZhongKui Xie RuoYu Wang 《Research in Cold and Arid Regions》 CSCD 2019年第6期407-418,共12页
An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)reveale... An understanding of soil microbial communities is crucial in roadside soil environmental assessments.The 16S rRNA se quencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway(QTH)revealed that the accu mulation of heavy metals(over about 10 years)has affected the diversity of bacterial abundance and microbial community structure.The proximity of a sampling site to the QTH/Qinghai-Tibet Railway(QTR),which is effectively a measure of the density of human engineering,was the dominant factor influencing bacterial community diversity.The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas.The dominant phyla across all samples were Actinobacteria and Proteobacteria.The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR(MC/WC sam pling sites),and Ni,Co,and V were positively correlated with proximity to the QTH and QTR(MA/WA sampling sites).The results presented in this study provide an insight into the relationships among heavy metals and soil microbial commu nities,and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment. 展开更多
关键词 qinghai-Tibet Highway(QTH) qinghai-Tibet Railway(QTR) soil bacterial community alpine wetland
下载PDF
Review of numerical simulation on the dy-namics of Qinghai-Xizang plateau 被引量:3
4
作者 陆诗阔 蔡永恩 《地震学报》 CSCD 北大核心 2004年第5期547-559,共13页
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earli... In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied. 展开更多
关键词 青藏高原 动力学过程 数值模型
下载PDF
Evidence of the Pan-Lake Stage in the Period of 40-28 ka B.P. on the Qinghai-Tibet Plateau 被引量:22
5
作者 ZHENG Mianping, MENG Yifeng and Wei LejunResearch & Development Center of Saline Lake and Epithermal Deposits,Chinese Academy of Geological Sciences, Beijing 100037 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期266-272,共7页
The Qinghai-Tibet plateau is one of major saline lake regions in China, where saline lakes are widespread and constitute an important object of researches on the palaeoclimatic change in the region. On the basis of co... The Qinghai-Tibet plateau is one of major saline lake regions in China, where saline lakes are widespread and constitute an important object of researches on the palaeoclimatic change in the region. On the basis of comprehensive investigations of the evolution of the lake's surface and sediments on the plateau, the authors have further demonstrated the existence of a pan-lake stage (river and lake flooding stage) on the Qinghai-Tibet plateau during the period of about 40+-28 ka B.P. and analyzed the palaeoclimatic characteristics of the pan-lake period and relationships between the ancient monsoons and the uplift of the plateau since the beginning of the Quaternary. 展开更多
关键词 qinghai-Tibet plateau Late Pleistocene pan-lake event PALAEOCLIMATE
下载PDF
Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau 被引量:11
6
作者 LI Jie JIANG Sha +4 位作者 WANG Bin JIANG Wei-wei TANG Yan-hong DU Ming-yuan GU Song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1396-1401,共6页
To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the e... To understand the water and energy exchange on the Qinghai-Tibetan Plateau, we explored the characteristics of evapotranspiration (ET) and energy fluxes from 2002 to 2005 over a Kobresia meadow ecosystem using the eddy covariance method. The ratio of annual ET to precipitation (P) of meadow ecosystem was about 60%, but varied greatly with the change of season from summer to winter. The annual ET/P in meadow was lower than that in shrub, steppe and wetland ecosystems of this plateau. The incident solar radiation (Rs) received by the meadow was obviously higher than that of lowland in the same latitude; however the ratio of net radiation (Rn) to Rs with average annual value of 0.44 was significantly lower than that in the same latitude. The average annual ET was about 390 mm for 2002-2005, of which more than 80% occurred in growing season from May to September. The energy consumed on the ET was about 44% of net radiation in growing season, which was lower than that of shrub, steppe and wetland on this plateau. This study demonstrates that the Kobresia meadow may prevent the excessive water loss through evapotranspiration from the ecosystem into the atmosphere in comparison to the shrub, steppe and wetland ecosystems of the Qinghai-Tibetan Plateau. 展开更多
关键词 eddy covariance EVAPOTRANSPIRATION net radiation PRECIPITATION qinghai-Tibetan Plateau
下载PDF
Interannual and Decadal Variations of Snow Cover overQinghai-Xizang Plateau and Their Relationships to Summer Monsoon Rainfall in China 被引量:51
7
作者 陈烈庭 吴仁广 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期18-30,共13页
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f... Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I). 展开更多
关键词 Snow cover over qinghai-Xizang Plateau Summer monsoon rainfall in China Interannual and decadal variations
下载PDF
Lithospheric Evolution and Geodynamic Process of the Qinghai-Tibet Plateau: An Inspiration from the Yadong-Golmud-Ejin Geoscience Transect 被引量:8
8
作者 LI Tingdong GAO Rui WU Gongjian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期173-180,共8页
Abstract The Tibet Geoscience Transect (Yadong-Golmud-Ejin) has revealed the basic structures, tectonic evolution and geodynamic process of the lithosphere of the Qinghai-Tibet plateau. The evidence of northward thrus... Abstract The Tibet Geoscience Transect (Yadong-Golmud-Ejin) has revealed the basic structures, tectonic evolution and geodynamic process of the lithosphere of the Qinghai-Tibet plateau. The evidence of northward thrusting of the Indian plate beneath the Himalayans on the southern margin and to southward compression of the Alxa block on the northern margin has been found. They were the driving forces causing the plateau uplift. The plateau is a continent resulting from amalgamation of eight terranes. These terranes are separated by sutures or large-scale faults, and different terranes have different lateral inhomogeneities and multi-layered lithospheric structures. At depths of about 20–30 km of the crust in the interior of the plateau there commonly exists a low-velocity layer. It is an uncoupled layer of the tectonic stress; above the layer, the upper crustal slices were thrust and overlapped each other and the rocks underwent brittle deformation, thus leading to shortening and thickening of the upper crust. Below the layer, the lateral change of the structure of the lower crust varies most greatly and ductile deformation occurs. The lower crust velocity of southern Tibet shows the reversed feature; whereas the lower crust velocity of northern Tibet increases and displays strong gradient variation and the character of the double Moho. On the whole, the Moho of the plateau is greatly undulatory. Although the crust of the Qinghai-Tibet Plateau has a great thickness, the lithosphere does not thicken markedly. The plateau is in a state of bi-directional compression. The unstable change of the Moho, the interaction between the crust and mantle and between the lithosphere and asthenosphere caused by the sinking of the lithospheric mantle and the strike slip and extension of the crust are the major dynamic factors for maintaining the present height and scope of the Qinghai-Tibet Plateau. 展开更多
关键词 qinghai-Tibet Plateau LITHOSPHERE geotransect continental dynamics
下载PDF
VARIATION OF d δ^(18)O/dT IN PRECIPITATION IN THE QINGHAI-XIZANG PLATEAU 被引量:5
9
作者 章新平 《Chinese Geographical Science》 SCIE CSCD 1997年第4期339-346,共8页
The relations between δ18O and temperature on the different time scales were analysed,according to the data from Tuotuohe (34°13’N, 96°25’E; 4533 m a. s. l. ), Delingha (37°22’N,97°22’E; 2981 ... The relations between δ18O and temperature on the different time scales were analysed,according to the data from Tuotuohe (34°13’N, 96°25’E; 4533 m a. s. l. ), Delingha (37°22’N,97°22’E; 2981 m a. s. l. ) and Xining (36°37’N, 101°46’E; 2261 m a. s. l. ) in the Qnghai-Xizang Plateau. The results show that the significance of d δ18O/dT on different time scales are different.The d δ18O/dT on the synoptic scale reflects the interdependent relation between δ18O and temperature in the short-term synoptic scale process; the d δ18O/d T on the seasonal scale reflects the relation between them whithin a year; and the d δ18O/d T on the climatic scale reflects the relation between them in the long-term climatic change. The calculated d δ18O/dT on climatic scale is very close to the theoretical values on the condition of advection transport for Tuotuohe Station. However, there are great differences between the calculated and the theoretical values for Delingha and Xining stations. 展开更多
关键词 qinghai-XIZANG PLATEAU OXYGEN ISOTOPE temperature time scale
下载PDF
Effects of warming and clipping on plant and soil properties of an alpine meadow in the Qinghai-Tibetan Plateau, China 被引量:14
10
作者 Man Hou XU Fei PENG +4 位作者 Quan Gang YOU Jian GUO Xia Fei TIAN Min LIU Xian XUE 《Journal of Arid Land》 SCIE CSCD 2015年第2期189-204,共16页
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and... Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon. 展开更多
关键词 simulated warming OVERGRAZING soil property plant property alpine meadow ecosystem qinghai-Tibetan Plateau
下载PDF
Calculation of Solar Albedo and Radiation Equilibrium over the Qinghai-Xizang Plateau and Analysisof Their Climatic Features 被引量:6
11
作者 赵平 陈隆勋 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第1期140-156,共17页
Using radiation data from the Automatic Weather Stations (AWSs) for thermal balance obser-vations, which were set up at Lhasa, Nagqu, Xigaze and Nyingchi by the Sino-Japanese Asian Monsoon Mechanism Co-operative Proje... Using radiation data from the Automatic Weather Stations (AWSs) for thermal balance obser-vations, which were set up at Lhasa, Nagqu, Xigaze and Nyingchi by the Sino-Japanese Asian Monsoon Mechanism Co-operative Project in 1993–1996, and 1985–1989 Earth Radiation Balance Experiment (ERBE) measurements of Langley Research Center/NASA of US, and 1961–1996 monthly mean data from 148 surface stations over the Qinghai-Xizang Plateau (QXP) and its neighborhood, study is performed on empirical calculation methods of surface albedo, surface total radiation, planetary albedo and outgoing longwave radiation with the climatic features of radiation balance at the surface and the atmospheric top examined. Evidences suggest that the empirical formulae for surface albedo, planetary albedo, surface to-tal radiation and outgoing longwave radiation from the atmospheric top are capable of describing their seasonal and interannual variations over the QXP. The surface albedo is marked by noticeable seasonal variation and yearly mean of 0.22 with the maximum of 0.29 in January and minimum of 0.17 in July and August; in winter the albedo has great horizontal difference, bigger in the moun-tains than in the river valleys, and small in summer. The planetary albedo shows a smaller range of its annual variation with the yearly mean of 0.37, the maximum (minimum) occurring in February and March (autumn). In winter its high-value regions are mainly at Gar (Shiquanhe) in the western QXP and from the southwestern Qinghai to the northeastern Tibet and the low-value area at the northern slope of the central Himalayas; in summer, however, the albedo distribution displays clear-ly a progressive decrease from southeast to northwest. As for the surface total radiation, its values and annual varying range are smaller in the east than in the southwest. Its high-value center is at the southern slope of the Himalayas in winter and makes a conspicuous westward migration in spr-ing, remaining there for a long time, and it begins to retreat eastward in autumn. Monthly mean values of the surface net radiation are all positive and larger in summer than in winter. The net ra-diation is significantly intensified under the combined effect of surface total radiation and surface albedo from spring to early summer, resulting in the strongest sector in the mid plateau with its center staying nearly motionless from March to September, and is reduced in autumn dominantly by surface effective radiation. The earth-atmosphere system loses heat outward from October to next February and gains in other months. On an average, the plateau gains heat of 15 W m-2 on an annual basis. Key words The Qinghai-Xizang Plateau - Albedo - Radiation balance - Climatic feature (1)This work was supported under the auspices of the National (G1998040800) and CAS’s Key Project for Basic Research on Tibetan Plateau (KZ951-A1-204; KZ95T-06). 展开更多
关键词 The qinghai-Xizang Plateau ALBEDO Radiation balance Climatic feature
下载PDF
Sedimentary Evolution of the Qinghai-Tibet Plateau in Cenozoic and its Response to the Uplift of the Plateau 被引量:7
12
作者 ZHANG Kexin WANG Guocan +11 位作者 XU Yadong LUO Mansheng JI Junliang XIAO Guoqiao WANG An SONG Bowen LIANG Yinpin JIANG Shangsong CAO Kai CHEN Fenning CHEN Ruiming YANG Yongfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第2期555-575,共21页
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and ... We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and iithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan-Garze and Gangdise belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai-Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdise--Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan-Garze, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining-Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18-13 Ma, and north-south fault basins formed in southern Tibet ca. 13-10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil-Qiangtang, Tarim, and Qaidam. The continuous uplift and intensive taphrogeny in the plateau divided the original large basin into small basins, deposition of lacustrine facies decreased considerably, and boulderstone accumulated, indicating a response to the overall uplift of the plateau. Here, we discuss the evolution of tectonic lithofacies paleogeography in Cenozoic and its response to the tectonic uplift of the Qinghai-Tibet Plateau in relation to the above characteristics. We have recognized five major uplift events, which occurred during 58-53 Ma, 45-30 Ma, 25-20 Ma, 13-7 Ma, and since 5 Ma. The results presented here indicate that the paleogeomorphic configurations of the Qinghai-Tibet Plateau turned over during the late Miocene, with high elevations in the east during the pre-Miocene switching to high contours in the west at the end of Miocene. 展开更多
关键词 lithofacies paleogeography depositional evolution uplift event CENOZOIC qinghai-Tibet Plateau
下载PDF
Temporal-Spatial Structure of Intraplate Uplift in the Qinghai-Tibet Plateau 被引量:21
13
作者 LI Dewei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期105-134,共30页
The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethy... The intraplate uplift of the Qinghai-Tibet Plateau took place on the basis of breakup and assembly of the Precambrian supercontinent, and southward ocean-continent transition of the Proto-, Paleo-, Meso- and Neo-Tethys during the Caledonian, Indosinian, Yanshanian and Early Himalayan movements. The intraplate tectonic evolution of the Qinghai-Tibet Plateau underwent the early stage of intraplate orogeny characterized by migrational tectonic uplift, horizontal movement and geological processes during 180-7 Ma, and the late stage of isostatic mountain building characterized by pulsative rapid uplift, vertical movement and geographical processes since 3.6 Ma. The spatial-temporal evolution of the intraplate orogeny within the Qinghai-Tibet Plateau shows a regular transition from the northern part through the central part to the southern part during 180-120 Ma, 65-35 Ma, and 25-7 Ma respectively, with extensive intraplate faulting, folding, block movement, magmatism and metallogenesis. Simultaneous intraplate orogeny and basin formation resulted from crustal rheological stratification and basin-orogen coupling that was induced by lateral viscous flow in the lower crust. This continental dynamic process was controlled by lateral flow of hot and soft materials within the lower crust because of slab dehydration and melted mantle upwelling above the subducted plates during the southward Tethyan ocean-continent transition processes or asthenosphere diapirism. Intraplate orogeny and basin formation were irrelevant to plate collision. The Qinghai-Tibet Plateau as a whole was actually formed by the isostatic mountain building processes since 3.6 Ma that were characterized by crust-scale vertical movement, and integral rapid uplift of the plateau, accompanied by isostatic subsidence of peripheral basins and depressions, and great changes in topography and environment. A series of pulsative mountain building events, associated with gravity equilibrium and isostatic adjustment of crustal materials, at 3.6 Ma, 2.5 Ma, 1.8-1.2 Ma, 0.9-0.8 Ma and 0.15-0.12 Ma led to the formation of a composite orogenic belt by unifying the originally relatively independent Himalayas, Gangdise, Tanghla, Longmenshan, Kunlun, Altyn Tagh, and Qilian mountains, and the formation of the complete Qinghai-Tibet Plateau with a unified mountain root after Miocene uplift of the plateau as a whole. 展开更多
关键词 intraplate orogeny isostatic mountain building lower crust flow basin-orogen coupling tectonic evolution qinghai-Tibet Plateau
下载PDF
Thermal dynamics of the permafrost active layer under increased precipitation at the Qinghai-Tibet Plateau 被引量:6
14
作者 LI De-sheng WEN Zhi +3 位作者 CHENG Qian-gong XING Ai-guo ZHANG Ming-li LI An-yuan 《Journal of Mountain Science》 SCIE CSCD 2019年第2期309-322,共14页
Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape proc... Precipitation has a significant influence on the hydro-thermal state of the active layer in permafrost regions, which disturbs the surface energy balance, carbon flux, ecosystem, hydrological cycles and landscape processes. To better understand the hydro-thermal dynamics of active layer and the interactions between rainfall and permafrost, we applied the coupled heat and mass transfer model for soil-plant-atmosphere system into high-altitude permafrost regions in this study. Meteorological data, soil temperature, heat flux and moisture content from different depths within the active layer were used to calibrate and validate this model. Thereafter, the precipitation was increased to explore the effect of recent climatic wetting on the thermal state of the active layer. The primary results demonstrate that the variation of active layer thickness under the effect of short-term increased precipitation is not obvious, while soil surface heat flux can show the changing trends of thermal state in active layer, which should not be negligible. An increment in year-round precipitation leads to a cooling effect on active layers in the frozen season, i.e. verifying the insulating effect of "snow cover". However, in the thawed season, the increased precipitation created a heating effect on active layers, i.e. facilitating the degradation of permafrost. The soil thermal dynamic in single precipitation event reveals that the precipitation event seems to cool the active layer, while compared with the results under increased precipitation, climatic wetting trend has a different influence on the permafrost evolution. 展开更多
关键词 Active layer PRECIPITATION qinghai-Tibet PLATEAU Hydro-thermal dynamic
下载PDF
Variations and trends of the freezing and thaw- ing index along the Qinghai-Xizang Railway for 1966-2004 被引量:7
15
作者 JIANG Fengqing HU Ruji LI Zhen 《Journal of Geographical Sciences》 SCIE CSCD 2008年第1期3-16,共14页
Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and tha... Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and thawing index were analyzed using the Mann-Kendall test and a simple linear regression method. The results show that: 1) The mean annual freezing indices range from 95 to 2300℃·d and the mean annual thawing indices range from 630 to 3250℃·d. The mean annual freezing index of the 7 stations exhibited decreasing trends with decreasing rate of -16.6- -59.1 ℃·d/10a. The mean annual thawing index of these 7 stations showed increasing trends with the related decreasing rate is 19.83-45.6℃·d/10a. 2) The MK trend test indicated the significant decreasing trends (significant at 〈 0.05 significant level) in the annual freezing index for most stations except for Golmud. The significant increasing trends can be observed in the annual thawing index for 4 stations except Golmud and Tuotuohe. Golmud was the only station with no trends in both annual freezing and annual thawing index. 展开更多
关键词 freezing and thawing index global warming trends qinghai-Xizang Railway
下载PDF
Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015 被引量:11
16
作者 XIONG Qinli XIAO Yang +8 位作者 Marwa Waseem A HALMY Mohammed A DAKHIL LIANG Pinghan LIU Chenggang ZHANG Lin Bikram PANDEY PAN Kaiwen Sameh B EL KAFRAWAY CHEN Jun 《Journal of Arid Land》 SCIE CSCD 2019年第5期637-651,共15页
Climate change and human activities can influence vegetation net primary productivity(NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural v... Climate change and human activities can influence vegetation net primary productivity(NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural values, is one of the most susceptible regions to climate change and human disturbances in the world. To assess the impact of climate change and human activities on vegetation dynamics in the grassland ecosystems of the northeastern Qinghai-Tibet Plateau, we applied a time-series trend analysis to normalized difference vegetation index(NDVI) datasets from 2000 to 2015 and compared these spatiotemporal variations with trends in climatic variables over the same time period. The constrained ordination approach(redundancy analysis) was used to determine which climatic variables or human-related factors mostly influenced the variation of NDVI. Furthermore, in order to determine whether current conservation measures and programs are effective in ecological protection and reconstruction, we divided the northeastern Qinghai-Tibet Plateau into two parts: the Three-River Headwater conservation area(TRH zone) in the south and the non-conservation area(NTRH zone) in the north. The results indicated an overall(73.32%) increasing trend of vegetation NPP in grasslands throughout the study area. During the period 2000–2015, NDVI in the TRH and NTRH zones increased at the rates of 0.0015/a and 0.0020/a, respectively. Specifically, precipitation accounted for 9.2% of the total variation in NDVI, while temperature accounted for 13.4%. In addition, variation in vegetation NPP of grasslands responded not only to long-and short-term changes in climate, as conceptualized in non-equilibrium theory, but also to the impact of human activities and their associated perturbations. The redundancy analysis successfully separated the relative contributions of climate change and human activities, of which village population and agricultural gross domestic product were the two most important contributors to the NDVI changes, explaining 17.8% and 17.1% of the total variation of NDVI(with the total contribution >30.0%), respectively. The total contribution percentages of climate change and human activities to the NDVI variation were 27.5% and 34.9%, respectively, in the northeastern Qinghai-Tibet Plateau. Finally, our study shows that the grassland restoration in the study area was enhanced by protection measures and programs in the TRH zone, which explained 7.6% of the total variation in NDVI. 展开更多
关键词 climate change human activities NDVI variation qinghai-Tibet PLATEAU REDUNDANCY analysis vegetation net primary PRODUCTIVITY
下载PDF
Collision Event during 177-135 Ma on the Eastern Marginof the Qinghai-Tibet Plateau: Evidence from 40Ar/ 39Ar Dating for Basaltson the Western Margin of the Yangtze Platform 被引量:10
17
作者 侯增谦 陈文 卢记仁 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第2期194-204,共11页
Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These ba... Geochronology of continental flood basalts sampled from the Emei large igneous province (LIP) on the western margin of the Yangtze platform was investigated by the laser microprobe 40Ar/39Ar dating technique. These basalts yield a fairly wide range of 40Ar/39Ar ages, varying from 259 to 135 Ma. One basalt sample, at least altered, recorded the oldest 40Ar/39Ar age of about 259 Ma, corresponding to a peak eruption age of the Emei LIP continental flood basalts. Most of the samples yield much younger ages from 135 to 177 Ma, which are consistent with the K-Ar ages for the same samples (122.8-172.1 Ma). The dating data suggest that these Permian basalts had been widely affected by the regional tectonothermal event at 177-135 Ma. The event was probably caused by the convergence and collision among the Laurasia, Yangtze and Qiangtang-Qamdo continental blocks on the eastern margin of the Qinghai-Tibet plateau after the late Triassic. The age of the event reflects the timing of the peak collisional orogeny. 展开更多
关键词 40Ar/39 Ar age basalts in the Emei LIP collisional orogeny qinghai-Tibet plateau
下载PDF
Glacier extent changes and possible causes in the Hala Lake Basin of Qinghai-Tibet Plateau 被引量:5
18
作者 LI Dong-Sheng CUI Bu-Li +2 位作者 WANG Ying XIAO Bei JIANG Bao-Fu 《Journal of Mountain Science》 SCIE CSCD 2019年第7期1571-1583,共13页
Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends.Glac... Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends.Glacier changes are also of great significance to the regulation of regional water resources.This study selected the Hala Lake Basin in the northeastern Qinhai-Tibet Plateau as a study area,and examined the relationships between the temporal and spatial change of glaciers in the northeastern Qinghai-Tibet Plateau and climate change based on remote sensing imagery,climatological data,and topographic data during the past 30 years.Results showed that glacier area in the Hala Lake basin fluctuated and decreased from106.24 km2 in 1986 to 78.84 km2 in 2015,with a decreasing rate of 0.94 km2·yr-1.The number of glacier patches,mean patch area,and largest patch index all decreased from 1986 to 2015,while the splitting index increased from 1986 to 2015,indicating that the landscape fragmentation of glacier in the Hala Lake Basin was increasing significantly during the study period.Glacier area change was mainly concentrated in the slopes>25°with an altitude of 4500-5000 m,and the retreating rate of glacier of sunny slope was obviously higher than that of shady slope.Geometric center of glacier in the basin moved from southwest to northeast towards high altitude.Results of the response of glacier extent to climate change showed that temperature was the dominant factor affecting glacier area dynamic change in the Hala Lake Basin.It is predicted that in future several years,the glacier area will decrease and fragment continually as a result of global warming on the Tibetan Plateau. 展开更多
关键词 GLACIER extent Climate change Hala LAKE Basin qinghai-Tibet PLATEAU
下载PDF
Enrichment of Mantle-derived Fluids in the Formation Process of Granitoids: Evidence from the Himalayan Granitoids around Kunjirap in the Western Qinghai-Tibet Plateau 被引量:6
19
作者 姜耀辉 凌洪飞 +3 位作者 蒋少涌 周珣若 芮行健 杨万志 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2002年第3期343-350,共8页
Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and dis... Taking the Himalayan granitoids around Kunjirap in the western Qinghai-Tibetplateau as an example, the authors present in this paper the characteristics of the granitoids richin mantle-derived fluid components and discuss their rock-forming mechanism. The research resultsindicate that the rock assemblage of the studied granitoids involves diopside syenite-diopsidegranite-biotite (monzonitic) granite, consisting mainly of K-feldspar, oligoclase, quartz,iron-phlogolite, diopside and edenite. The rocks are rich in mantle-derived fluid components ofvolatiles including F, alkali metal elements such as K, Na, Rb, Sr and Ha, and radiogenicheat-producing elements such as U and Th. They were generated by the influx of mantle-derived fluidsinto the lower crest to give rise to partial melting during the lithosphere thinning in theQinghai-Tibet plateau. 展开更多
关键词 mantle-derived fluid GRANITOID western qinghai-Tibet plateau
下载PDF
Cluster analysis on summer precipitation field over Qinghai-Tibet Plateau from 1961 to 2004 被引量:7
20
作者 LU Heli SHAO Quanqin +3 位作者 LIU Jiyuan WANG Junbang CHEN Shenbin CHEN Zhuoqi 《Journal of Geographical Sciences》 SCIE CSCD 2008年第3期295-307,共13页
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation... The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai-Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial distribution through accumulated variance,correlation analysis,regression analysis,empirical orthogonal function,power spectrum function and spatial analysis tools of GIS.The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong.The altitude of these stations and summer precipitation tendency presented stronger positive correlation below 2000 m,with correlation value up to 0.604(α=0.01).The subtracting tendency values between 1961-1983 and 1984-2004 at five altitude ranges(2000-2500 m,2500-3000 m,3500-4000 m,4000-4500 m and above 4500 m)were above zero and accounted for 71.4%of the total.Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields:the Southeast Plateau Pattern Field,the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field.The former two ones had a reverse value from the north to the south and opposite line was along 35°N.The potential cycles of the three pattern fields were 5.33a,21.33a and 2.17a respectively,tested by the confidence probability of 90%.The station altitudes and summer precipitation potential cycles presented strong negative correlation in the stations above 4500 m,with correlation value of-0.626(α=0.01).In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the stations above 3500 m and increased as the altitude rose in those below 3500 m.The empirical orthogonal function analysis in June precipitation,July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July's,in which southern Plateau was positive and northern Plateau negative.But positive value area in July precipitation pattern field was obviously less than June's.The August pattern field was totally opposite to June's and July's.The positive area in August pattern field jumped from the southern Plateau to the northern Plateau. 展开更多
关键词 qinghai-Tibet Plateau summer precipitation cluster analysis precipitation pattern field precipitation cycle
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部