Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal micro...Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.展开更多
In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, whi...In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.展开更多
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig...Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.展开更多
Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide...Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.展开更多
Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qing...Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.展开更多
The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on ed...The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.展开更多
The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to...The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.展开更多
Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors a...Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors an exceptionally diverse flora,however,a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions.In this study,we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau.We also examined the relationships between multifaceted beta diversity,geographical distance,and climatic difference,and evaluated the relative importance of various factors(i.e.,climate,topography and history)in shaping patterns of beta diversity.Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP.We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference.The environmental factors that contributed most to these patterns of beta diversity include annual precipitation,mean annual temperature,climatic gradients and climatic instability.Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP.Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.展开更多
The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio...The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet...The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.展开更多
The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotr...The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.展开更多
Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indic...Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover.展开更多
Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics o...Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vegetation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Ktmlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.展开更多
The Qinghai-Tibet plateau is one of major saline lake regions in China, where saline lakes are widespread and constitute an important object of researches on the palaeoclimatic change in the region. On the basis of co...The Qinghai-Tibet plateau is one of major saline lake regions in China, where saline lakes are widespread and constitute an important object of researches on the palaeoclimatic change in the region. On the basis of comprehensive investigations of the evolution of the lake's surface and sediments on the plateau, the authors have further demonstrated the existence of a pan-lake stage (river and lake flooding stage) on the Qinghai-Tibet plateau during the period of about 40+-28 ka B.P. and analyzed the palaeoclimatic characteristics of the pan-lake period and relationships between the ancient monsoons and the uplift of the plateau since the beginning of the Quaternary.展开更多
We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and G...We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and Grt_4)are observed in the rock with specific types of inclusion features.Only Grt_3 shows evidence for non-coaxial strain.Combining the information shows a sequence of main inclusion phases,from old to young:oriented quartz inclusions at core,staurolite and prismatic sillimanite at mantle,kyanite and kyanite pseudomorph,and biotite at rim in Grt_1;fibrolitic sillimanite pseudomorphing kyanite±corundum,kyanite,and spinel+sillimanite after garnet+corundum in Grt_2;biotite,sillimanite,quartz±spinel in Grt_3;and ilmenite,rulite,quartz and sillimanite in Grt_4.The pre-melting,original rock composition was calculated through stepwise re-integration of melt into the residual,XRF based composition,allowing the early prograde metamorphic evolution to be deduced from petrographical observations and pseudosections.The earliest recognizable stage occurred in the sillimanite field at around 575℃ at 4.5 kbar.Subsequent collision associated with Gondwana amalgamation led to crustal thickening along a P-T trajectory with an average dP/dT of ~30 bar/℃ in the kyanite field,up to ~660℃ at 6.5 kbar,before crossing the wet-solidus at around 675 ℃ at 7.5 kbar.The highest pressure occurred at P > 10 kbar and T around 780℃ before prograde decompression associated with further heating.At 825℃ and 10.5 kbar,the rock re-entered into the sillimanite field.The temperature peaked at 900℃ at ca.9-9.5 kbar.Subsequent near-isobaric cooling led to the growth of Grt_4 and rutile at T ~880℃.Local pyrophyllite rims around sillimanite suggest a late stage of rehydration at T<400℃,which probably occurred after uplift to upper crustal levels.U-Pb dating of zircons by LAICPMS of the khondalite yielded two concordant ^(206)Pb/^(238)U age groups with mean values of 542±2 Ma(MSWD=0.24,Th/U=0.01-0.03)and 514±3 Ma(MSWD=0.50,Th/U=0.01-0.05)interpreted as peak metamorphism of the khondalite and subsequent melt crystallization during cooling.展开更多
Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out...Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out for the amount of highland barley powder,white granulated sugar,and shortening. Then,the response surface optimization analysis was made on crispness and sensory score of the biscuit. The experiment indicates that taking the refined flour as the base 100 g( 100%),the formula of 20% highland barley powder,25% white granulated sugar,and 26% shortening can bake crisp biscuit with complete shape,pure flavor and high quality.展开更多
The Qinghai-Tibet Plateau encompasses a large quantity of wetlands, some of which have been degraded to varying severity levels. In the literature, a number of degradation indicators have been proposed to evaluate eco...The Qinghai-Tibet Plateau encompasses a large quantity of wetlands, some of which have been degraded to varying severity levels. In the literature, a number of degradation indicators have been proposed to evaluate ecological health of wetlands, but their effectiveness in the plateau environment remains unknown. In this study, we assessed the effectiveness of three degradation indicators, soil moisture content at lo em deep, vegetative cover, and density of pika burrows. The degradation severity of wetlands in Maduo County on the Qinghai-Tibet Plateau is enumerated at four levels, intact, slight, moderate and severe. Analysis of xo6 samples collected in the field demonstrates that the density of pika burrows is the least reliable indicator. By comparison, vegetative cover and underlying soil moisture content are more reliable, even though neither is a perfect indicator as the difference among adjacent levels of severity as revealed by t-test is not always statistically significant. The imperfection of vegetative cover as an indicator is due to its variation among different types of wetlands. The limitation of moisture content is attributed to its non-linear relationship with wetland degradation. Above the threshold of about 50% in moisture content wetlands are unlikely to be degraded. It is recommended that moisture be measured at the point near the surface and vegetative cover be further differentiated by species in order to improve their effectiveness.展开更多
Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige al...Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige alpine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation experiment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their interactions on CO2 and CH4 emission rates in Zoige alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respectively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the temperature and soil type (p 〈 0.001), and soil moisture and soil type (p 〈 0.001), and CH4 emission rate was significantly affected by the interaction of the temperature and soil moisture (p 〈 0.001). Q10 values for CO2 emission rate are higher at the range of 5 ℃-25℃ than 25 ℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoige alpine wetland.展开更多
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金funded by the National Natural Science Foundation of China(32101876)the Discipline ConstructionFood Science and Engineering(SPKX-202202)grants。
文摘Highland barley(HB)is a high-altitude cereal with rich nutritional components and potential health benefits.To clarify its hypoglycemic effect and mechanism,we investigated the effect of whole grain HB and fecal microbiota transplantation(FMT)on glucose metabolism and gut microbiota in high-fat diet and streptozotocin(HFD/STZ)-induced diabetic mice.The results showed that HB(40%)significantly decreased fasting blood glucose and the area under the glucose tolerance curve,significantly increased insulin secretion and improved insulin resistance in HFD/STZ-induced diabetic mice(P<0.05).Inflammatory factors and blood lipid indices were also significantly alleviated after 12 weeks of 40%HB intervention(P<0.05).Additionally,beneficial bacteria,such as Bifidobacterium and Akkermansia,were significantly enriched in the gut of diabetic mice after whole grain HB intervention.Meanwhile,the results of further FMT experiments verified that the fecal microbiota after the 40%HB intervention not only significantly increased the relative abundance of Bifidobacterium and Akkermansia but also effectively improved glucose metabolism and alleviated the inflammatory state in HFD/STZ-induced diabetic mice.Collectively,our study confirmed the bridge role of gut microbiota in improving glucose metabolism of whole grain HB,which could promote the development of precision nutrition.
基金supported by the Natural Science Foundation of Qinghai Province, China (No.2021-ZJ940Q)。
文摘In recent years, lakes on the Qinghai-Tibet Plateau have become more responsive to climate change. In September 2011, Zonag Lake in Hoh Xil experienced sudden drainage, the water eventually flowed into Yanhu Lake, which caused Yanhu Lake to continue to expand. The potential collapse of Yanhu Lake could directly threaten the operational safety of the adjacent Qinghai-Tibet Highway, Qinghai-Tibet Railway. To explore the implications of expanding lakes on the surrounding permafrost, we selected Hoh Xil Yanhu Lake on the Qinghai-Tibet Plateau to study the effect of lake expansion on permafrost degradation. The permafrost degradation in the Yanhu Lake basin from October 2017 to December 2022 was inverted using Sentinel-1 satellite image data and small baseline subset interferometry synthetic aperture radar(SBAS-In SAR) technology. Additionally, permafrost degradation from February 2007 and February 2010 was analyzed using advanced land observing satellite phased array-type L-band synthetic aperture radar(ALOS PALSAR) satellite images and differential interferometric synthetic aperture radar(D-In SAR) technique. The results showed that the permafrost around Yanhu Lake experienced accelerated degradation. Prior to the expansion of Yanhu Lake, the average annual deformation rate along the line of sight(LOS) direction was 6.7 mm/yr. After the expansion, the rate increased to 20.9 mm/yr. The integration of spatial-temporal distribution maps of surface subsidence, Wudaoliang borehole geothermal data, meteorological data, Yanhu Lake surface area changes, and water level changes supports the assertion that the intensified permafrost degradation could be attributed to lake expansion rather than the rising air temperature. Furthermore, permafrost degradation around Yanhu Lake could impact vital infrastructure such as the adjacent Qinghai-Tibet Highway and Qinghai-Tibet Railway.
基金supported by the 12th Five-Year Plan for Science and Technology Development of China(2012BAD33B05).
文摘Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.
基金financial support provided by the Foundation of Henan Educational Committee (22A180024)Natural Science Foundation of Henan Province (232300420212)。
文摘Understanding the evolutionary and ecological processes involved in population differentiation and speciation provides critical insights into biodiversity formation. In this study, we employed 29,865 single nucleotide polymorphisms(SNPs) and complete plastomes to examine genomic divergence and hybridization in Gentiana aristata, which is endemic to the Qinghai-Tibet Plateau(QTP) region. Genetic clustering revealed that G. aristata is characterized by geographic genetic structures with five clusters(West, East, Central, South and North). The West cluster has a specific morphological character(i.e., blue corolla) and higher values of FSTcompared to the remaining clusters, likely the result of the geological barrier formed by the Yangtze River. The West cluster diverged from the other clusters in the Early Pliocene;these remaining clusters diverged from one another in the Early Quaternary. Phylogenetic reconstructions based on SNPs and plastid data revealed substantial cyto-nuclear conflicts. Genetic clustering and D-statistics demonstrated rampant hybridization between the Central and North clusters,along the Bayankala Mountains, which form the geological barrier between the Central and North clusters. Species distribution modeling demonstrated the range of G. aristata expanded since the Last Interglacial period. Our findings provide genetic and morphological evidence of cryptic diversity in G. aristata, and identified rampant hybridization between genetic clusters along a geological barrier.These findings suggest that geological barriers and climatic fluctuations have an important role in triggering diversification as well as hybridization, indicating that cryptic diversity and hybridization are essential factors in biodiversity formation within the QTP region.
基金supported by the CAS"Light of West China"Program (2021XBZG-XBQNXZ-A-007)the National Natural Science Foundation of China (31971436)the State Key Laboratory of Cryospheric Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy Sciences (SKLCS-OP-2021-06).
文摘Evapotranspiration is an important parameter used to characterize the water cycle of ecosystems.To under-stand the properties of the evapotranspiration and energy balance of a subalpine forest in the southeastern Qinghai-Tibet Plateau,an open-path eddy covariance system was set up to monitor the forest from November 2020 to October 2021 in a core area of the Three Parallel Rivers in the Qing-hai-Tibet Plateau.The results show that the evapotranspira-tion peaked daily,the maximum occurring between 11:00 and 15:00.Environmental factors had significant effects on evapotranspiration,among them,net radiation the greatest(R^(2)=0.487),and relative humidity the least(R^(2)=0.001).The energy flux varied considerably in different seasons and sensible heat flux accounted for the main part of turbulent energy.The energy balance ratio in the dormant season was less than that in the growing season,and there is an energy imbalance at the site on an annual time scale.
基金funded by the National Natural Science Foundation of China(31870435)the European Union's Marie Sklodowska-Curie Action Postdoctoral Fellowship(101061660)the China Scholarship Council(202106180060).
文摘The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.
基金funded by the Natural Science Foundation of Hubei Province(2022CFB260,2021CFB508)the National Natural Science Foundation of China(No.42074007No.42130101).
文摘The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.
基金This study was funded by the National Natural Science Foundation of China(grant no.31901212)Talent Start-up Foundation of Guangzhou University(grant no.RP2020079).
文摘Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota.The Qinghai-Tibet Plateau(QTP)harbors an exceptionally diverse flora,however,a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions.In this study,we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau.We also examined the relationships between multifaceted beta diversity,geographical distance,and climatic difference,and evaluated the relative importance of various factors(i.e.,climate,topography and history)in shaping patterns of beta diversity.Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP.We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference.The environmental factors that contributed most to these patterns of beta diversity include annual precipitation,mean annual temperature,climatic gradients and climatic instability.Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP.Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.
基金funded by the National Key R&D Program of China (2022YFB4202102)the Key R&D Program of Ningxia Hui Autonomous Region (2022BEG02003)the Excellent Member of Youth Innovation Promotion Association CAS (No.Y202085)。
文摘The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
文摘The monitoring,prediction and assessment of status about climate changes and ecological environment at home and abroad were discussed in this study,and the scientific significance and countermeasures for Qinghai-Tibet Plateau to cope with these problems were also put forward.
基金supported by the Innovation Program of Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (201003013)the National Basic Research Program of China(2010CB951702)
文摘The aim of this study was to assess the crop water demand and deficit of spring highland barley and discuss suitable irrigation systems for different regions in Tibet, China. Long-term trends in reference crop evapotranspiration and crop water demand were analyzed in different regions, together with crop water demand and deficit of spring highland barley under different precipitation frequencies. Results showed that precipitation trends during growth stages did not benefit the growth of spring highland barley. The crop coefficient of spring highland barley in Tibet was 0.87 and crop water demand was 389.0 ram. In general, a water deficit was found in Tibet, because precipitation was lower than water consumption of spring highland barley. The most severe water deficit were in the jointing to heading stage and the heading to wax ripeness stage, which are the most important growth stages for spring highland barley; water deficit in these two stages would be harmful to the yield. Water deficit showed different characteristics in different regions. In conclusion, irrigation systems may be more successful if based on an analysis of water deficit within different growth stages and in different regions.
基金National Natural Science Foundation of China No.90202012+1 种基金 National Basic Research Program of China, No.2005CB422006 No. 2002CB412507
文摘Based on the NOAA AVHRR-NDVI monthly data from 1981 to 2001, the spatial distribution and dynamic change of land cover along the Qinghai-Tibet Highway and Railway were studied. The results of the analytical data indicate that the NDVI values in July, August and September are rather high during a year, and a linear trend by calculating NDVI of each pixel computed based on the average values of NDVI in July, August and September were obtained. The results are as follows: 1) Land cover of the study area by NDVI displays high at two sides of the area and low in the center, and agriculture area 〉 alpine meadow 〉 alpine grassland 〉 desert grassland. 2) In the study area, the amount ofpixels with high increase, slight increase, no change, slight decrease and high decrease account for 0.29%, 14.86%, 67.61%, 16.7% and 0.57% of the whole area, respectively. The increase of land cover pixels is mainly in the agriculture and alpine meadow and the decrease pixels mainly in the alpine grassland, desert grassland and hungriness. Grassland and hungriness contribute to the decrease mostly and artificial land and meadow contribute to the increase mostly. 3) In the area where human beings live, the changing trend is obvious, such as the valleys of Lhasa River and Huangshui River and area along the Yellow River; in the high altitude area with fewer people living, the changing trend is relatively low, like the area of Hoh Xil. 4) Human being's behaviors are a key factor followed by the climate changes affecting land cover.
基金Under the auspices of the National Natural Science Foundation of China (No. 40599424, No. 40472086, No. 40121303)National Basic Research Program of China (No. 2004CB720208)
文摘Using satellite-observed Normalized Difference Vegetation Index (NDVI) dada and station-observed surface air temperature anomalies for the Northern Hemisphere (NH), we analyze the spatio-temporal characteristics of vegetation variations in the Qinghai-Tibet Plateau and their correlations with global warming from 1982 to 2002. It is found that the late spring and early summer (May-June) are the months with the strongest responses of vegetation to global warming. Based on the Rotated Empirical Orthogonal Function (REOF) method, the study shows that the first REOF spatial pattern of average NDVI for May-June reveals the northern and southern zones with great inter-annual variations of vegetation, the northern zone from the eastern Ktmlun Mountains to the southwestern Qilian Mountain and southern zone from the northern edge of the Himalayas eastward to the Hengduan Mountains. The vegetation, especially grassland, in the two zones increases significantly with global warming, with a correlation coefficient of 0.71 between the first REOF of May-June vegetation and the April-May surface air temperature anomaly in the NH during 1982-2002. A long-term increasing trend in May-June vegetation for the plateau region as a whole is also attributed mainly to global warming although there are considerable regional differences. The areas with low NDVI (grassland and shrubland) usually respond more evidently to global warming, especially since the 1990s, than those with moderate or high NDVI values.
文摘The Qinghai-Tibet plateau is one of major saline lake regions in China, where saline lakes are widespread and constitute an important object of researches on the palaeoclimatic change in the region. On the basis of comprehensive investigations of the evolution of the lake's surface and sediments on the plateau, the authors have further demonstrated the existence of a pan-lake stage (river and lake flooding stage) on the Qinghai-Tibet plateau during the period of about 40+-28 ka B.P. and analyzed the palaeoclimatic characteristics of the pan-lake period and relationships between the ancient monsoons and the uplift of the plateau since the beginning of the Quaternary.
基金the National Research Council(NRC)of Sri Lanka(grant NO 15-089)and the Ministry of Technology and Research(MTR/TRD/AGR/3/1/04)Department of Science and Technology,India(Grant No.DST/INT/SL/P-004)L.M.K.acknowledges support by the Stichting Dr.Schurmannfonds(Grants Nos.88/2012,94/2013 and 101/2014)
文摘We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and Grt_4)are observed in the rock with specific types of inclusion features.Only Grt_3 shows evidence for non-coaxial strain.Combining the information shows a sequence of main inclusion phases,from old to young:oriented quartz inclusions at core,staurolite and prismatic sillimanite at mantle,kyanite and kyanite pseudomorph,and biotite at rim in Grt_1;fibrolitic sillimanite pseudomorphing kyanite±corundum,kyanite,and spinel+sillimanite after garnet+corundum in Grt_2;biotite,sillimanite,quartz±spinel in Grt_3;and ilmenite,rulite,quartz and sillimanite in Grt_4.The pre-melting,original rock composition was calculated through stepwise re-integration of melt into the residual,XRF based composition,allowing the early prograde metamorphic evolution to be deduced from petrographical observations and pseudosections.The earliest recognizable stage occurred in the sillimanite field at around 575℃ at 4.5 kbar.Subsequent collision associated with Gondwana amalgamation led to crustal thickening along a P-T trajectory with an average dP/dT of ~30 bar/℃ in the kyanite field,up to ~660℃ at 6.5 kbar,before crossing the wet-solidus at around 675 ℃ at 7.5 kbar.The highest pressure occurred at P > 10 kbar and T around 780℃ before prograde decompression associated with further heating.At 825℃ and 10.5 kbar,the rock re-entered into the sillimanite field.The temperature peaked at 900℃ at ca.9-9.5 kbar.Subsequent near-isobaric cooling led to the growth of Grt_4 and rutile at T ~880℃.Local pyrophyllite rims around sillimanite suggest a late stage of rehydration at T<400℃,which probably occurred after uplift to upper crustal levels.U-Pb dating of zircons by LAICPMS of the khondalite yielded two concordant ^(206)Pb/^(238)U age groups with mean values of 542±2 Ma(MSWD=0.24,Th/U=0.01-0.03)and 514±3 Ma(MSWD=0.50,Th/U=0.01-0.05)interpreted as peak metamorphism of the khondalite and subsequent melt crystallization during cooling.
基金Supported by Agricultural Product Processing Technology and Product Development Project of the 13th Five-Year Plan of Tibet
文摘Taking refined flour,matsutake powder,and highland barley powder as main raw materials,this experiment studied the optimal formula of matsutake highland barley biscuit. Besides,single factor experiment was carried out for the amount of highland barley powder,white granulated sugar,and shortening. Then,the response surface optimization analysis was made on crispness and sensory score of the biscuit. The experiment indicates that taking the refined flour as the base 100 g( 100%),the formula of 20% highland barley powder,25% white granulated sugar,and 26% shortening can bake crisp biscuit with complete shape,pure flavor and high quality.
基金supported by the International Science&Technology Cooperation Program of China(Grant No.2011DFG93160,2011DFA20820)the National Natural Sciences Foundation of China(Grant No.41161084)+1 种基金Special Fund for Agroscientific Research in the Public Interest(Grant No.201203041)the Scientific Research Collaboration and Training of Top Scientists project(Document No.2010-1595),Department of International Exchange&Cooperation of the Chinese Ministry of Education
文摘The Qinghai-Tibet Plateau encompasses a large quantity of wetlands, some of which have been degraded to varying severity levels. In the literature, a number of degradation indicators have been proposed to evaluate ecological health of wetlands, but their effectiveness in the plateau environment remains unknown. In this study, we assessed the effectiveness of three degradation indicators, soil moisture content at lo em deep, vegetative cover, and density of pika burrows. The degradation severity of wetlands in Maduo County on the Qinghai-Tibet Plateau is enumerated at four levels, intact, slight, moderate and severe. Analysis of xo6 samples collected in the field demonstrates that the density of pika burrows is the least reliable indicator. By comparison, vegetative cover and underlying soil moisture content are more reliable, even though neither is a perfect indicator as the difference among adjacent levels of severity as revealed by t-test is not always statistically significant. The imperfection of vegetative cover as an indicator is due to its variation among different types of wetlands. The limitation of moisture content is attributed to its non-linear relationship with wetland degradation. Above the threshold of about 50% in moisture content wetlands are unlikely to be degraded. It is recommended that moisture be measured at the point near the surface and vegetative cover be further differentiated by species in order to improve their effectiveness.
基金Under the auspices of Fundamental Research Funds for the Central Universities (No. BLYX200932)National Natural Science Foundation of China (No. 30700108, 41071329)Forestry Commonweal Program (No. 200804005)
文摘Wetland stores substantial amount of carbon and may contribute greatly to global climate change debate. However, few researches have focused on the effects of global climate change on carbon mineralization in Zoige alpine wetland, Qinghai-Tibet Plateau, which is one of the most important peatlands in China. Through incubation experiment, this paper studied the effects of temperature, soil moisture, soil type (marsh soil and peat soil) and their interactions on CO2 and CH4 emission rates in Zoige alpine wetland. Results show that when the temperature rises from 5℃ to 35℃, CO2 emission rates increase by 3.3-3.7 times and 2.4-2.6 times under non-inundation treatment, and by 2.2-2.3 times and 4.1-4.3 times under inundation treatment in marsh soil and peat soil, respectively. Compared with non-inundation treatment, CO2 emission rates decrease by 6%-44%, 20%-60% in marsh soil and peat soil, respectively, under inundation treatment. CO2 emission rate is significantly affected by the combined effects of the temperature and soil type (p 〈 0.001), and soil moisture and soil type (p 〈 0.001), and CH4 emission rate was significantly affected by the interaction of the temperature and soil moisture (p 〈 0.001). Q10 values for CO2 emission rate are higher at the range of 5 ℃-25℃ than 25 ℃-35℃, indicating that carbon mineralization is more sensitive at low temperature in Zoige alpine wetland.