With the rapid development of social economy and urban−rural integration,the phenomenon of farmland aban-donment worldwide has proved to be one of the main trends of land use and land cover change(LUCC),and profoundly...With the rapid development of social economy and urban−rural integration,the phenomenon of farmland aban-donment worldwide has proved to be one of the main trends of land use and land cover change(LUCC),and profoundly affected the rural landscape and regional ecological environment.Restricted by the natural environ-ment,economic development and backward agricultural technology,the phenomenon of farmland abandonment is also common in the Qingzang Plateau(QP).Therefore,this paper adopted the spatial autocorrelation method to analyze the spatial pattern of abandonment in the agricultural and pastoral areas of the Qingzang Plateau(APA−QP)in 2017,and the geographically weighted regression(GWR)model to explore the effects of geograph-ical resources,socio-economic development and location conditions on farmland abandonment.This study found that:1)From 2015 to 2017,the abandoned farmland area in the APA−QP was approximately 18.23×10^(4)ha,with an overall abandonment rate of 15.18%.On the whole,it showed the distribution characteristics of“strong in the south and weak in the north,strong in the east and weak in the west”.2)There were positive spatial correlation between both abandoned area and abandonment rate in the APA−QP,showing“concave”and“convex”patterns,respectively,mainly concentrated in the Huang−shui Valley and the Southeast Tibet;while in the western and northern regions,the degree of abandonment was relatively low.3)Farmland abandonment in the APA−QP was mainly driven by the geographical environment changes and farmers’decision−making on farmland utilization.There was significant spatial heterogeneity on farmland abandonment associated with the impact of geographical resources,socio−economics and location conditions.The geographical resource factors had a positive impact on the abandonment,and were strongly constrained by natural geographic conditions such as altitude and slope.The farmland resources in the Qingzang Plateau are limited,but are of strategic significance for the sustainable development of agriculture in the whole Qingzang Plateau.In order to realize the rational distribution of agricul-ture and animal husbandry and the sustainable utilization of farmland resources in the plateau region,land use strategies should be implemented according to regional differences and regional advantages in order to ensure the ecological environment security of Qingzang Plateau.展开更多
On the basis of main contents of social construction and key points of construction,this paper analyzes features of conditions of northwest Sichuan plateau pastoral area.The social construction at current stage mainly...On the basis of main contents of social construction and key points of construction,this paper analyzes features of conditions of northwest Sichuan plateau pastoral area.The social construction at current stage mainly includes social cause in narrow sense,and social management at meso-level.The northwest Sichuan plateau pastoral area is faced with the best policy and development opportunity.However,there are still many weak aspects.Firstly,social structure is not coordinated with economic structure.Secondly,social construction ability of grass-roots government is weak.Thirdly,the ability to respond to public demands is low.Fourthly,there is a big gap in availability of basic public service.Finally,it presents path selection for social construction of northwest Sichuan plateau pastoral area:strengthen social construction ability of grass-roots government;promote social construction with livelihood projects as key projects;boost social construction taking advantage of ecological construction;develop basic public service with the aid of external forces;intensify evaluation system for supervision of social construction works.展开更多
Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Q...Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.展开更多
Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in ord...Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.展开更多
The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio...The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.展开更多
The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.U...The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.展开更多
The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 statio...The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.展开更多
The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially...The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km^3, and the ground ice volume per unit volume was(0.31 ± 0.11) m^3/m^3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.展开更多
Monitoring rock desert formation caused by two different origins(ice-snow melting and drying)through remote sensing is crucial to our understanding of the interaction between the underlying surface of different rock d...Monitoring rock desert formation caused by two different origins(ice-snow melting and drying)through remote sensing is crucial to our understanding of the interaction between the underlying surface of different rock desert and land-atmosphere types,as well as the relationship between bare land and soil erosion.A number of achievements have been made in remote sensing monitoring of desert areas,but there is a lack of accurate classification and remote sensing identification of rock desert types based on formation mechanism.In this study,the north and south sides of the eastern Kunlun Mountains in the northern part of the Qinghai-Tibet Plateau of China were taken as the study areas.Landsat operational landscape imager,digital elevation model,and precipitation and temperature grid data were used as data sources.By identifying the bare areas based on the normalized difference vegetation index(NDVI),we used the multi-element fusion method of contours,isotherms,and isohyets to identify the rock desert types in the ice-snow melting and dry areas.The results showed that:(1)the rock desert areas identified by remote sensing based on topographic and meteorological elements were highly accurate,with an overall accuracy of 88.45%and kappa coefficient of 0.77.The multi-element fusion method of contours,isotherms,and isohyets could effectively identify the rock desert types in the ice-snow melting and dry areas;(2)the optimal segmentation range of the ice-snow melting and dry areas was 3600 m contour,-2°C-2°C isotherms,and 100-130 mm isohyets.The areas with elevation less than 3600 m,annual average temperature higher than 2°C,and average annual precipitation less than 100 mm were rock desert in the dry areas.The range of-2°C-2°C isotherms and 100-130 mm isohyets was the transition area between the ice-snow melting and dry areas.The areas with elevation higher than 3600 m,annual average temperature less than-2°C,and average annual precipitation higher than 130 mm were rock desert in the ice-snow melting areas;and(3)the identification accuracy of the bare areas based on the NDVI method was better,specifically,the identification accuracy of plain bare areas was generally better than that of mountain bare areas.The remote sensing identification method considers not only the topographic factors that have great influence on the spatial distribution of the two types of rock desert areas,but also the meteorological factors,which can provide a scientific reference for the effective identification of the two types of rock desert areas.展开更多
Snow disaster is one of the top ten natural disasters worldwide, and the most se- vere natural disaster to affect the pastoral areas of the Qinghai-Tibet Plateau. Based on the hazard harmfulness data collected from hi...Snow disaster is one of the top ten natural disasters worldwide, and the most se- vere natural disaster to affect the pastoral areas of the Qinghai-Tibet Plateau. Based on the hazard harmfulness data collected from historical records and data collected from entities affected by this hazard in 2010, a comprehensive analysis of the 18 indexes of snow disaster on the Qinghai-Tibet Plateau was conducted, encompassing the hazard harmfulness, the amount of physical exposure the hazard-bearing entities face, the sensitivity to the hazard, and the capacity to respond to the disaster. The analysis indicates that: (1) areas at high-risk of snow disaster on the Qinghai-Tibet Plateau are located in certain areas of the counties of Yecheng and Pishan in the Xinjiang region; (2) areas at medium-risk of snow disaster are found between the Gangdise Mountains and the Himalayas in the central-western part of the Qinghai-Tibet Plateau, and the southeastern part of the southern Qinghai Plateau; (3) the risk of snow disaster is generally low throughout the large area to the south of 30°N and the re- gion on the border of the eastern Qinghai-Tibet Plateau. Overall, the risk of snow disaster in high-altitude areas of the central Qinghai-Tibet Plateau is higher than that at the edge of the plateau.展开更多
The special geography and human environment of the Qinghai-Tibet Plateau has created the unique hydrochemical characteristics of the region’s natural water,which has been preserved in a largely natural state.However,...The special geography and human environment of the Qinghai-Tibet Plateau has created the unique hydrochemical characteristics of the region’s natural water,which has been preserved in a largely natural state.However,as the intensity of anthropogenic activities in the region has continued to increase,the water environment and hydrochemical characteristics of the Qinghai-Tibet Plateau have altered.In this study,water samples from the western,southern,and northeastern border areas of the Qinghai-Tibet Plateau,where human activities are ongoing,were collected,analyzed,and measured.The regional differences and factors controlling them were also investigated.The key results were obtained as follows.(1) Differences in the physical properties and hydrochemical characteristics,and their controlling factors,occurred in the different boundary areas of the Qinghai-Tibet Plateau.These differences were mainly the consequence of the geographical environment and geological conditions.(2) The water quality was good and suitable for drinking,with most samples meeting GB (Chinese national) and WHO (World Health Organization) drinking water standards.(3) The chemical properties of water were mainly controlled by the weathering of carbonates and the dissolution of evaporative rocks,with the former the most influential.(4) The biological quality indicators of natural water in the border areas were far superior to GB and WHO drinking water standards.展开更多
基金This research was supported by the National Social Science Fund of China(Grant No.20&ZD090)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0405)the Na-tional Natural Science Foundation of China(Grant No.42071249,Grant No.42001199).
文摘With the rapid development of social economy and urban−rural integration,the phenomenon of farmland aban-donment worldwide has proved to be one of the main trends of land use and land cover change(LUCC),and profoundly affected the rural landscape and regional ecological environment.Restricted by the natural environ-ment,economic development and backward agricultural technology,the phenomenon of farmland abandonment is also common in the Qingzang Plateau(QP).Therefore,this paper adopted the spatial autocorrelation method to analyze the spatial pattern of abandonment in the agricultural and pastoral areas of the Qingzang Plateau(APA−QP)in 2017,and the geographically weighted regression(GWR)model to explore the effects of geograph-ical resources,socio-economic development and location conditions on farmland abandonment.This study found that:1)From 2015 to 2017,the abandoned farmland area in the APA−QP was approximately 18.23×10^(4)ha,with an overall abandonment rate of 15.18%.On the whole,it showed the distribution characteristics of“strong in the south and weak in the north,strong in the east and weak in the west”.2)There were positive spatial correlation between both abandoned area and abandonment rate in the APA−QP,showing“concave”and“convex”patterns,respectively,mainly concentrated in the Huang−shui Valley and the Southeast Tibet;while in the western and northern regions,the degree of abandonment was relatively low.3)Farmland abandonment in the APA−QP was mainly driven by the geographical environment changes and farmers’decision−making on farmland utilization.There was significant spatial heterogeneity on farmland abandonment associated with the impact of geographical resources,socio−economics and location conditions.The geographical resource factors had a positive impact on the abandonment,and were strongly constrained by natural geographic conditions such as altitude and slope.The farmland resources in the Qingzang Plateau are limited,but are of strategic significance for the sustainable development of agriculture in the whole Qingzang Plateau.In order to realize the rational distribution of agricul-ture and animal husbandry and the sustainable utilization of farmland resources in the plateau region,land use strategies should be implemented according to regional differences and regional advantages in order to ensure the ecological environment security of Qingzang Plateau.
基金Supported by the Ford Foundation " Policy Research on Development of Plateau Pastoral Areas at Upstream Yangtze River"(1095-0787)
文摘On the basis of main contents of social construction and key points of construction,this paper analyzes features of conditions of northwest Sichuan plateau pastoral area.The social construction at current stage mainly includes social cause in narrow sense,and social management at meso-level.The northwest Sichuan plateau pastoral area is faced with the best policy and development opportunity.However,there are still many weak aspects.Firstly,social structure is not coordinated with economic structure.Secondly,social construction ability of grass-roots government is weak.Thirdly,the ability to respond to public demands is low.Fourthly,there is a big gap in availability of basic public service.Finally,it presents path selection for social construction of northwest Sichuan plateau pastoral area:strengthen social construction ability of grass-roots government;promote social construction with livelihood projects as key projects;boost social construction taking advantage of ecological construction;develop basic public service with the aid of external forces;intensify evaluation system for supervision of social construction works.
基金Under the auspices of Supporting Program of the 'Eleventh Five-year Plan' for Science and Technology Research of China (No. 2009BAC61B02)China Postdoctoral Science Foundation Funded Project (No. 20100470561)
文摘Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland.
基金funded by the National Natural Science Foundation of China (42002283, 42062019)the Science and Technology Plan Project of Qinghai Province,China (2022-ZJ-Y08)the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0905, 2019QZKK0805)
文摘Roots exert pullout resistance under pullout force,allowing plants to resist uprooting.However,the pullout resistance characteristics of taproot-type shrub species of different ages remain unclear.In this study,in order to improve our knowledge of pullout resistance characteristics of taproot systems of shrub species,we selected the shrub species Caragana korshinskii Kom.in different growth periods as the research plant and conducted in situ root pullout test.The relationships among the maximum pullout resistance,peak root displacement,shrub growth period,and aboveground growth indices(plant height and plant crown breadth)were analyzed,as well as the mechanical process of uprooting.Pullout resistance of 4-15 year-old C.korshinskii ranged from 2.49(±0.25)to 14.71(±4.96)kN,and the peak displacement ranged from 11.77(±8.61)to 26.50(±16.09)cm.The maximum pullout resistance and the peak displacement of roots increased as a power function(R^(2)=0.9038)and a linear function(R^(2)=0.8242)with increasing age,respectively.The maximum pullout resistance and the peak displacement increased with increasing plant height;however,this relationship was not significant.The maximum pullout resistance increased exponentially(R^(2)=0.5522)as the crown breadth increased.There was no significant relationship between the peak displacement and crown breadth.The pullout resistance and displacement curve were divided into three stages:the initial nonlinear growth,linear growth,and nonlinear stages.Two modes of failure of a single root occurred when the roots were subjected to vertical loading forces:the synchronous breakage mode and the periderm preferential breakage mode.These findings provide a foundation for further investigation of the soil reinforcement and slope protection mechanisms of this shrub species in the loess area of northeastern Qinghai-Tibet Plateau,China.
基金funded by the National Key R&D Program of China (2022YFB4202102)the Key R&D Program of Ningxia Hui Autonomous Region (2022BEG02003)the Excellent Member of Youth Innovation Promotion Association CAS (No.Y202085)。
文摘The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau.
基金the financial support of the National Natural Science Foundation of China(42176212,41976074 and 41302034)the Marine S&T Fund of Shandong Province for Laoshan Laboratory(2021QNLM020002)the Marine Geological Survey Program(DD20221704)。
文摘The Qilian Mountain permafrost area located in the northern of Qinghai-Tibet Plateau is a favorable place for natural gas hydrate formation and enrichment,due to its well-developed fractures and abundant gas sources.Understanding the formation and distribution of multi-component gas hydrates in fractures is crucial in accurately evaluating the hydrate reservoir resources in this area.The hydrate formation experiments were carried out using the core samples drilled from hydrate-bearing sediments in Qilian Mountain permafrost area and the multi-component gas with similar composition to natural gas hydrates in Qilian Mountain permafrost area.The formation and distribution characteristics of multi-component gas hydrates in core samples were observed in situ by X-ray Computed Tomography(X-CT)under high pressure and low temperature conditions.Results show that hydrates are mainly formed and distributed in the fractures with good connectivity.The ratios of volume of hydrates formed in fractures to the volume of fractures are about 96.8%and 60.67%in two different core samples.This indicates that the fracture surface may act as a favorable reaction site for hydrate formation in core samples.Based on the field geological data and the experimental results,it is preliminarily estimated that the inventory of methane stored in the fractured gas hydrate in Qilian Mountain permafrost area is about 8.67×1013 m3,with a resource abundance of 8.67×108 m3/km2.This study demonstrates the great resource potential of fractured gas hydrate and also provides a new way to further understand the prospect of natural gas hydrate and other oil and gas resources in Qilian Mountain permafrost area.
基金Key project of CAS, No.KZCX1-10-07 Key project of Cold and Arid Regions Environmental and Engineering Research Institute, CAS, No.CX210097 NSFC No.49805006.
文摘The seasonal frozen soil on the Qinghai-Tibet Plateau has strong response to climate change, and its freezing-thawing process also affects East Asia climate. In this paper, the freezing soil maximum depth of 46 stations covering 1961–1999 on the plateau is analyzed by rotated experience orthogonal function (REOF). The results show that there are four main frozen anomaly regions on the plateau, i.e., the northeastern, southeastern and southern parts of the plateau and Qaidam Basin. The freezing soil depths of the annual anomaly regions in the above representative stations show that there are different changing trends. The main trend, except for the Qaidam Basin, has been decreasing since the 1980s, a sign of the climate warming. Compared with the 1980s, on the average, the maximum soil depth decreased by about 0.02 m, 0.05 m and 0.14 m in the northeastern, southeastern and southern parts of the plateau, but increased by about 0.57 m in the Qaidam Basin during the 1990s. It means there are different responses to climate system in the above areas. The spectrum analysis reveals different change cycles: in higher frequency there is an about 2-year long cycle in Qaidam Basin and southern part of the plateau in the four representative areas whereas in lower frequency there is an about 14-year long cycle in all the four representative areas due to the combined influence of different soil textures and solutes in four areas.
基金Under the auspices of the Chinese Academy of Sciences(CAS)Key Research Program(No.KZZD-EW-13)National Natural Science Foundation of China(No.91647103)
文摘The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km^3, and the ground ice volume per unit volume was(0.31 ± 0.11) m^3/m^3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content.
基金the Natural Science Foundation of Qinghai Province of China(2021-ZJ-905)the Second Qinghai-Tibet Plateau Scientific Expedition and Research Program of China(2019QZKK0606).
文摘Monitoring rock desert formation caused by two different origins(ice-snow melting and drying)through remote sensing is crucial to our understanding of the interaction between the underlying surface of different rock desert and land-atmosphere types,as well as the relationship between bare land and soil erosion.A number of achievements have been made in remote sensing monitoring of desert areas,but there is a lack of accurate classification and remote sensing identification of rock desert types based on formation mechanism.In this study,the north and south sides of the eastern Kunlun Mountains in the northern part of the Qinghai-Tibet Plateau of China were taken as the study areas.Landsat operational landscape imager,digital elevation model,and precipitation and temperature grid data were used as data sources.By identifying the bare areas based on the normalized difference vegetation index(NDVI),we used the multi-element fusion method of contours,isotherms,and isohyets to identify the rock desert types in the ice-snow melting and dry areas.The results showed that:(1)the rock desert areas identified by remote sensing based on topographic and meteorological elements were highly accurate,with an overall accuracy of 88.45%and kappa coefficient of 0.77.The multi-element fusion method of contours,isotherms,and isohyets could effectively identify the rock desert types in the ice-snow melting and dry areas;(2)the optimal segmentation range of the ice-snow melting and dry areas was 3600 m contour,-2°C-2°C isotherms,and 100-130 mm isohyets.The areas with elevation less than 3600 m,annual average temperature higher than 2°C,and average annual precipitation less than 100 mm were rock desert in the dry areas.The range of-2°C-2°C isotherms and 100-130 mm isohyets was the transition area between the ice-snow melting and dry areas.The areas with elevation higher than 3600 m,annual average temperature less than-2°C,and average annual precipitation higher than 130 mm were rock desert in the ice-snow melting areas;and(3)the identification accuracy of the bare areas based on the NDVI method was better,specifically,the identification accuracy of plain bare areas was generally better than that of mountain bare areas.The remote sensing identification method considers not only the topographic factors that have great influence on the spatial distribution of the two types of rock desert areas,but also the meteorological factors,which can provide a scientific reference for the effective identification of the two types of rock desert areas.
基金Foundation: National Basic Research Program of China, No.2010CB951704 National Natural Science Foundation of China, No.40761003, No.41271123
文摘Snow disaster is one of the top ten natural disasters worldwide, and the most se- vere natural disaster to affect the pastoral areas of the Qinghai-Tibet Plateau. Based on the hazard harmfulness data collected from historical records and data collected from entities affected by this hazard in 2010, a comprehensive analysis of the 18 indexes of snow disaster on the Qinghai-Tibet Plateau was conducted, encompassing the hazard harmfulness, the amount of physical exposure the hazard-bearing entities face, the sensitivity to the hazard, and the capacity to respond to the disaster. The analysis indicates that: (1) areas at high-risk of snow disaster on the Qinghai-Tibet Plateau are located in certain areas of the counties of Yecheng and Pishan in the Xinjiang region; (2) areas at medium-risk of snow disaster are found between the Gangdise Mountains and the Himalayas in the central-western part of the Qinghai-Tibet Plateau, and the southeastern part of the southern Qinghai Plateau; (3) the risk of snow disaster is generally low throughout the large area to the south of 30°N and the re- gion on the border of the eastern Qinghai-Tibet Plateau. Overall, the risk of snow disaster in high-altitude areas of the central Qinghai-Tibet Plateau is higher than that at the edge of the plateau.
基金Key R&D and Transformation Program of Tibet,No.XZ201901NB08Major Science and Technology Project of Tibet,No.XZ201901NA03,No.XZ201801NA02
文摘The special geography and human environment of the Qinghai-Tibet Plateau has created the unique hydrochemical characteristics of the region’s natural water,which has been preserved in a largely natural state.However,as the intensity of anthropogenic activities in the region has continued to increase,the water environment and hydrochemical characteristics of the Qinghai-Tibet Plateau have altered.In this study,water samples from the western,southern,and northeastern border areas of the Qinghai-Tibet Plateau,where human activities are ongoing,were collected,analyzed,and measured.The regional differences and factors controlling them were also investigated.The key results were obtained as follows.(1) Differences in the physical properties and hydrochemical characteristics,and their controlling factors,occurred in the different boundary areas of the Qinghai-Tibet Plateau.These differences were mainly the consequence of the geographical environment and geological conditions.(2) The water quality was good and suitable for drinking,with most samples meeting GB (Chinese national) and WHO (World Health Organization) drinking water standards.(3) The chemical properties of water were mainly controlled by the weathering of carbonates and the dissolution of evaporative rocks,with the former the most influential.(4) The biological quality indicators of natural water in the border areas were far superior to GB and WHO drinking water standards.