期刊文献+
共找到1,002篇文章
< 1 2 51 >
每页显示 20 50 100
Geochronology,Petrogenesis and Tectonic Setting of the Late Jurassic I-type Granites in the North Qinling Orogenic Belt,Central China 被引量:2
1
作者 HUANG Yanna LI Dunpeng +1 位作者 XIAO Aifang XU Songming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1132-1149,共18页
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter... The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction. 展开更多
关键词 partial melting tectonic transition I-type granite Late Jurassic North qinling orogenic Belt
下载PDF
Re-Os and U-Pb Geochronology of the Erlihe Pb-Zn Deposit,Qinling Orogenic Belt,Central China,and Constraints on Its Deposit Genesis 被引量:29
2
作者 ZHANG Fan LIU Shuwen +4 位作者 LI Qiugen SUN Yali WANG Zongqi YAN Quanren YAN Zhen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期673-682,共10页
The Erlihe Pb-Zn deposit is an important mine of the Pb-Zn metallogenic zone in the South Qinling Orogen.It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs c... The Erlihe Pb-Zn deposit is an important mine of the Pb-Zn metallogenic zone in the South Qinling Orogen.It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold.Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials.The Re-Os isotopic data of four pyrite samples construct an isochron,yielding a weighted average age of 226±17 Ma(mean square weighted deviation=1.7),which is considered the main mineralization age.A dioritic porphyrite vein sample,showing weaker mineralization,was also dated using the SHRIMP zircon UPb isotopic method to constrain the youngest metallogenic age of the ore deposit,because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field,but also the main ore bodies.The dioritic porphyrite sample yields a weighted mean ^(206)Pb/^(238)U age of 221±3 Ma,which is slightly younger than the Re-Os isotopic isochron age of the pyrites,considered as the upper age limit of the mineralization,namely the ending age of the mineralization.The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid,and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle.The Erlihe Pb-Zn deposit and associated dioritic porphyrite vein,important records of Qinling tectonic-magmatism-mineralization activities,were formed during the Triassic collisional orogeny processes. 展开更多
关键词 Erlihe Pb-Zn deposit Re-Os isotopic system dioritic porphyrite vein SHRIMP zircon UPb age qinling orogen
下载PDF
Xiba Granitic Pluton in the Qinling Orogenic Belt, Central China: Its Petrogenesis and Tectonic Implications 被引量:13
3
作者 ZHANG Fan LIU Shuwen +5 位作者 CHEN Xu LI Qiugen DAI Junzhi YANG Kai WU Fenghui CHEN Youzhang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第5期1128-1142,共15页
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHR... Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting. 展开更多
关键词 Xiba granitoids SHRIMP U-Pb ages geochemistry and Sr-Nd isotopic systematics petrogenesis and tectonic implication qinling orogenic belt
下载PDF
Geochronological,geochemical,and Nd-Hf isotopic studies of the Qinling Complex,central China:Implications for the evolutionary history of the North Qinling Orogenic Belt 被引量:29
4
作者 Chunrong Diwu Yong Sun +2 位作者 Yan Zhao BingXiang Liu Shaocong Lai 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第4期499-513,共15页
The Qinling Complex of central China is thought to be the oldest rock unit and the inner core of the North Qinling Orogenic Belt (NQOB). Therefore, the Qinling Complex is the key to understanding the pre- Paleozoic ... The Qinling Complex of central China is thought to be the oldest rock unit and the inner core of the North Qinling Orogenic Belt (NQOB). Therefore, the Qinling Complex is the key to understanding the pre- Paleozoic evolution of the NQOB. The complex, which consists of metagraywackes and marbles, un- derwent regional amphibolite-facies metamorphism. In this study, we constrained the formation age of the Qinling Complex to the period between the late Mesoproterozoic and the early Neoproterozoic (ca. 1062-962 Ma), rather than the Paleoproterozoic as previously thought. The LA-ICP-MS data show two major metamorphic ages (ca. 499 and ca. 420-400 Ma) for the Qinling Complex. The former age is consistent with the peak metamorphic age of the high- and ultra-high pressure (HP-UHP) rocks in the Qinling Complex, indicating that both the HP-UHP rocks and their country rocks experienced intensive regional metamorphism during the Ordovician. The latter age may constrain the time of partial melting in the NQOB between the late Silurian and early Devonian. The Qinling Complex is mostly affiliated with subduction-accretion processes along an active continental margin, and should contain detritus deposited in a forearc basin. 展开更多
关键词 qinling orogenic Beltqinling ComplexRodiniaPartial meltingZircon
下载PDF
Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China 被引量:4
5
作者 SuoShutian ZhongZengqiu +1 位作者 ZhouHanwen YouZhendong 《Journal of China University of Geosciences》 SCIE CSCD 2003年第2期95-102,共8页
In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and tog... In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun North Qaidam North Qinling UHP metamorphic belt. The other is the Dabie Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite and microdiamond bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino Korean cratons, occurred during the Paleozoic. On the other hand, the well constrained Dabie Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intracontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts as a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino Korean cratons. Therefore, any dynamic model for the orogen must account for the development of UHP metamorphic rocks belonging to the separate two tectonic belts of different age and tectono metamorphic history. 展开更多
关键词 Kanfenggou ultrahigh pressure metamorphism intracontinental collision intercontinental collision central orogenic Belt eclogite.
下载PDF
An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen,central China:Petrological,mineralogical and geochemical constraints 被引量:2
6
作者 Jinyang Zhang Changqian Ma Zhenbing She 《Geoscience Frontiers》 SCIE CAS 2012年第5期635-646,共12页
The Erlangmiao granite intrusion is located in the eastern part of the East Qinling Orogen. The granite contains almost 99 vol.% felsic minerals with accessory garnet, muscovite, biotite, zircon, and Fe-Ti oxide. Garn... The Erlangmiao granite intrusion is located in the eastern part of the East Qinling Orogen. The granite contains almost 99 vol.% felsic minerals with accessory garnet, muscovite, biotite, zircon, and Fe-Ti oxide. Garnet is the dominant accessory mineral, shows zoned texture, and is rich in w(FeO) (14.13%--16.09%) and w(MnO) (24.21%--27.44%). The rocks have high SiO2, alkalis, FeOt/ MgO, TiO2/MgO and low A1203, CaO with w(Na2O)/w(K20)〉 ]. Their Rb, Ga, Ta, Nb, Y, and Yb contents are high and Sr, Ba, Eu, Zr, P, and Ti contents are low. These features indicate that the Erlang- miao granite is a highly evolved metaluminous A-type. Garnet crystallized at the expense of biotite from the MnO-rich evolved melt after fractionation of biotite, plagioclase, K-feldspar, zircon, apatite, and ilmenite. The relatively high initial 878r/S6Sr ratios (0.706--0.708), low and negative εNd (120 Ma) values (-6.6 to -9.0), and old Nd model ages (1.5--1.7 Ga) suggest that the rocks were probably formed by partial melting of the Paleoproterozoic granitic gneisses from the basement, with participation of depleted mantle in an extensional setting. 展开更多
关键词 GARNET A-type granite Early Cretaceous East qinling orogen
下载PDF
A Comparison about Metamorphism among the Oldest-Rock Units from Orogenic Belts of Dabie,Eastern Qinling and Eastern Kunlun of Central Mountain Ranges,China 被引量:1
7
作者 Chen Nengsong Zhang Kexin Wang Guocan Hou Guangjiu Zhu Yunhai Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期10-15,共6页
The Dabie orogen, Eastern Qinling orogen and Eastern Kunlun orogen are the major components of the Central Mountain Ranges of China and each has distinctively metamorphic processes in their oldest rock units. The Dab... The Dabie orogen, Eastern Qinling orogen and Eastern Kunlun orogen are the major components of the Central Mountain Ranges of China and each has distinctively metamorphic processes in their oldest rock units. The Dabie orogen oldest rock units had experienced an intermediate-higher pressure, upper amphibolite to lower granulite facies metamorphism in the Indosinian intracontinental subduction collision event. The clockwise pt path, synchronous attainment of t max and p max and a segment of high slope retrograde path suggest a tectono driven rapid exhumation of the oldest rock units to upper middle crustal level following the end of the subduction collision process. The oldest rock units, also called Qinling Group, of Eastern Qinling Mountains suffered intensively collisional metamorphism at an immature plate tectonic framework during Jinningian movement about 1 000 Ma ago. The clockwise pt path with reach of t max following several hundreds of MPa decreasing from p max suggests that the denudation of the deeply burial rock units was due essentially to isostatic relaxation. During the Caledonian stage, the highly metamorphosed oldest rock units suffered from a high t thermal event in arc environment and superimposed by contact metamorphism. After thermal peaks, the rock units were exhumed in a short distance and cooled down isobarically. No regional metamorphism higher than upper greenschist facies condition since 300 Ma has been traced within exposed rocks in the eastern portion of Northern Qinling orogen. The oldest rock units in the Eastern Kunlun orogen were metamorphosed to upper amphibolite facies to lower granulite facies rocks early or during the Luliang movement (some 1 800 Ma ago). The high grade metamorphic rock units had a long resident time at the deep crustal level, and were exhumed to middle upper crustal level during the Caledonian to Hercynian tectonometamorphic events. Shallow erosion of the orogenic belt led to good preservation of the low pressure metamorphic belt. 展开更多
关键词 the oldest metamorphic rock units pt path geodynamics of metamorphism Dabie orogen Eastern qinling orogen Eastern Kunlun orogen central Mountain Ranges of China.
下载PDF
A Comparison of Nd Isotopes of Granitoids from the Central Asian Orogenic Belt and Qinling-Dabie Orogen,and Implications for Understanding of Crustal Growth from Accretion to Collision 被引量:1
8
作者 WANG Tao WANG Xiaoxia +7 位作者 TONG Ying HUANG He LI Shan ZHANG Jianjun GUO Lei ZHANG Lei SONG Peng QIN Qie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第S01期150-151,共2页
Orogens can generally be divided into two types:accretionary and collisional.The fundamental differences in deep-crustal compositions and architecture from accretion to collision and how to identify them is not well u... Orogens can generally be divided into two types:accretionary and collisional.The fundamental differences in deep-crustal compositions and architecture from accretion to collision and how to identify them is not well understood.This is one of the major aims of the IGCP 662 project(www.igcp662.org.cn). 展开更多
关键词 GRANITOIDS ACCRETIONARY orogenY juvenile CRUST central Asian orogenIC Belt
下载PDF
Geology, Pb Isotope Geochemistry and Ore Genesis of the Liziyuan Gold Deposit, West Qinling Orogen, Central China 被引量:1
9
作者 DING Lele ZHU Laimin +3 位作者 YUAN Honglin LU Rukui XIONG Xiao YANG Tao 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期1082-1099,共18页
The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian ... The Liziyuan gold deposit, situated on the south side of the Shangdan suture zone, West Qinling Orogen, occurs in metamorphic volcanic rocks(greenschist facies) of the early Paleozoic Liziyuan Group and in Indosinian Tianzishan monzogranite. Orebodies in the Liziyuan gold field are controlled by the ductile-brittle shear zone, and by thrusting nappe faults related to the Indosinian orogeny. In detail, this paper analyzed the geological characteristics of the Liziyuan gold field, and the Pb isotopes of the Lziyuan host rocks, granitoids(Tianzishan monzogranite and Jiancaowan syenite porphyry), sulfides, and auriferous quartz veins by multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS). In addition, previous data on the sulfur, hydrogen, and oxygen isotopes were employed to discuss the possible sources of the ore-forming fluids and materials, and to further understand the tectonic setting of the Liziyuan gold deposit. The sulfides and their host rocks(Lziyuan Group), Tianzishan monzogranite and Jiancaowan syenite porphyry, and auriferous quartz veins have similar Pb isotopic compositions.Zartman’s plumbotectonic model diagram shows that most of the data for the deposit fall near the orogenic Pb evolutionary curve or within the area between the orogenic and mantle Pb evolutionary curves. In the△β-△γ diagram, which genetically classifies the lead isotopes, most of the data fall within the range of the subduction-zone lead mixed with upper crust and mantle. This indicates that a complex source of the ore lead formed in the orogenic environment. The δ34S values of the sulfides range from 3.90 to 8.50‰(average6.80‰), with a pronounced mode at 5.00‰-8.00‰. These values are consistent with that of orogenic gold deposits worldwide, indicating that the sulfur sourced mainly from reduced metamorphic fluids. The isotopic hydrogen and oxygen compositions support a predominantly metamorphic origin of the oreforming fluids, with possible mixing of minor magmatic fluids, but the late stage was dominated by meteoric water. The characteristics of the Liziyuan gold deposit formed in the Indosinian orogenic environment of the Qinling Orogen are consistent with those of orogenic gold deposits found worldwide. 展开更多
关键词 Pb isotope ore genesis Liziyuan gold deposit orogenic gold deposit West qinling orogen China
下载PDF
Taipingite-(Ce),(Ce73+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4F3,a new mineral from the Taipingzhen REE deposit,North Qinling Orogen,central China
10
作者 Kai Qu Xianzhang Sima +7 位作者 Guang Fan Guowu Li Ganfu Shen Huakai Chen Xing Liu Qingqing Yin Ting Li Yanjuan Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2339-2346,共8页
A new cerite group mineral species,taipingite-(Ce),ideally(Ce7^3+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4 F3,has been found in the Taipingzhen rare earth element(REE)deposit in the North Qinling Orogen(NQO),Central China.It forms... A new cerite group mineral species,taipingite-(Ce),ideally(Ce7^3+,Ca2)∑9Mg(SiO4)3[SiO3(OH)]4 F3,has been found in the Taipingzhen rare earth element(REE)deposit in the North Qinling Orogen(NQO),Central China.It forms subhedral grains(up to approximately 100 μm×200 μm)commonly intergrown with the REE mineral assemblages and is closely associated with allanite-(Ce),gatelite-(Ce),tornebohmite-(Ce),fluocerite-(Ce),fluocerite-(La),fluorite,bastnasite-(Ce),parisite-(Ce)and calcite.Taipingite-(Ce)is light red to pinkish brown under a binocular microscope and pale brown to colorless in thin section,and it is translucent to transparent with a grayish-white streak and vitreous luster.This mineral is brittle with conchoidal fracture;has a Mohs hardness value of approximately 51/2 and exhibits no cleavage twinning or parting.The calculated density is 4.900(5)g/cm3.Optically,taipingite-(Ce)is uniaxial(+),withω=1.808(5),ε=1.812(7),c=ε,and a=b=ω.Furthermore,this mineral is insoluble in HCl,HNO3 and H2 SO4.Electron microprobe analysis demonstrated that the sample was relatively pure,yielding the empirical formula(with calculated H2 O):(Ce4.02La1.64Nd1.49Pr0.41Sm0.10Gd0.02Ho0.02Tm0.01Lu0.02Y0.03Ca0.66Mg0.05Th(0.01-0.51∑9(Mg0.75Fe0.253+)∑1(SiO4)3{[SiO3(OH)]3.98[PO3(OH)]0.02}∑4(F1.81OH1.17Cl0.02∑3.Taipingite-(Ce)is trigonal and exhibits space group symmetry R3 c with unit cell parameters a=10.7246(3)Å,c=37.9528(14)Å,V=3780.39(20)Å3 and Z=6.The strongest eight lines in the X-ray diffraction pattern are[d in A(I)(hkl)]:4.518(50)(202),3.455(95)(122),3.297(85)(214),3.098(35)(300),2.941(100)(02,10),2.683(65)(220),1.945(40)(238)and 1.754(40)(30,18).The crystal structure has been refined to a R1 factor of 0.025,calculated for the 2312 unique observed reflections(Fo≥4σ).The mineral is named after its discovery locality and is characterized as the F-dominant analogue of cerite-(Ce). 展开更多
关键词 Taipingite-(Ce) Cerite group New mineral species Chemical composition Crystal structure North qinling orogen
下载PDF
M agmatic Gold Mineralization in the Western Qinling Orogenic Belt: Geology and Metallogenesis of the Baguamiao,Liba and Xiaogouli Gold Deposits 被引量:12
11
作者 FENGJianzhong WANGDongbo +2 位作者 WANGXueming ZENGYishan LITiefeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期529-533,共5页
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-... The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution. 展开更多
关键词 Western qinling orogenic Belt Baguamiao Gold Deposit Liba Gold Deposit Xiaogouli Gold Deposit GRANITE
下载PDF
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen,China 被引量:7
12
作者 FENG Yangwei QU Hongjun +1 位作者 YANG Chenyi LV Lushi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第4期1244-1263,共20页
Qinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchaean group to Neopaleozoic. Mineral deposit typ... Qinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchaean group to Neopaleozoic. Mineral deposit types are complete consisting of crystal flaky graphite deposit and aphanitic graphite deposit, ore types of the former are main graphite gneiss, graphite schist and graphitized marble, and ore types of the latter are main graphite layer metamorphosised from coal bed and graphitic carbargilite. At present, most graphite deposits with low research degree only implement preliminary investigations of the graphite resource, which has a good prospect. Based on the basic material of dozens of graphite deposits, spots and plays discovered in the Qinling orogen, this paper applied geologic multidisciplinary analysis method to disclose the graphite deposit types of the Qinling orogen, mainly through outdoors geologic survey and specimen examination with analysis of some typical deposits: regional metamorphism crystal graphite deposits and thermo-contact metamorphic aphanitic graphite deposits, with the control of latitudinally trending regional tectonic, graphite deposits of the Qinling orogen distribute sublatitudinally trending three large ore belts: I the Neoarchean-Proterozoic basement crystal graphite enrichment deposits zone along the south margin of North China plate; II the Carboniferous intermountain basin group aphanitic graphite enrichment deposits zone near the Shangdan suture of the West Qinling; III Paleozoic crystal graphite enrichment deposits zone in the Qinling paleomicroplate of the west part of the East Qinling.Conclusions are reached from multiple inquiries: Qinling multi-cycle complex continental collision orogen zone has experienced multiple tectonic framework transformation and polyphase tectonic thermal event from NeoArchean Erathem adjointing multiple graphite tectonic mineralization cycle. In the light of chief control of mineralization and ore types, each of the three large graphite deposits belts of the Qinling orogen has its own genesis: I graphite deposits enriched metallogenetic zone is that regional tectogenetic movement from NeoArchaean caused polyphase metapepsis, which superimposed up and reconstructed NeoArchean Erathem to Proterozoic basement, forming regional metamorphic big flake crystal graphite deposits; I! graphite deposits enriched metallogenetic zone is that polyphase regional tectogenetic movement associated with multiple heating caused by multiphase igneous intrusion, which resulted in original coal layers emerging multiple thermo-contact metamorphisms and formed thermo-contact metamorphic aphanitic graphite deposits. III graphite deposits enriched metallogenetic zone is that Palaeozoic cap- rock experienced polyphase metapepsis, forming regional metamorphic finely flake crystal graphite deposits. Cemprehensive research of metallogenetic mechanism in graphite deposits and its associated profitable deposits of the Qinling orogen is importance for future exploration. 展开更多
关键词 qinling orogen graphite deposits graphite gneiss Metallogenic regularity
下载PDF
Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications 被引量:5
13
作者 Fan Yang Fei Xue +5 位作者 M. Santosh Gongwen Wang Sung Won Kim Zhiwei Shen Wenjuan Jia Xuhuang Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第5期1803-1821,共19页
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation... The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at w145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the w145 Ma interpreted as response to the peak of magmatism in the region,and the w140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negative εHf(t) values of e16.67 to e4.61,and Hf crustal model ages (TDM^C) of 2255e1490 Ma,indicating magma sourced from the melting of Paleo- to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160e130 Ma and 111e108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display εHf(t) values ranging from e41.9 to 2.1 and TDM^C values of 3387e1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as I-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with EeW extension in the Early Cretaceous.This extension is correlated with the NeS trending post-collisional extension between the North China Craton and Yangtze Craton as well as the EeW trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen. 展开更多
关键词 PETROLOGY Geochemistry ZIRCON U-Pb-Lu-Hf isotopes ZIRCON Hf isotopic mapping Luanchuan region East qinling orogen
下载PDF
Metamorphism of the East Sector of the Southern Qinling Orogenic Belt and Its Geological Significance 被引量:7
14
作者 WEI Chunjing YANG Chonghui ZHANG Shouguang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期65-77,共13页
The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian an... The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian and less commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism. The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite fades in the Fuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies (garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220–260 Ma. This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolite facies belong to the typical medium-pressure type which shows geothermal gradients of about 17–20 ***C/km and was probably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulite facies belongs to the low-pressure type which shows geothermal gradients of about 25–38 ***C/km and was probably affected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculated from the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place during an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch metamorphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch metamorphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny. 展开更多
关键词 METAMORPHISM metamorphic minerals P-T conditions and paths east sector of the southern qinling orogenic belt
下载PDF
Fluid Inclusions of Orogenic Gold Deposits in the Zhongchuan Area,Western Qinling and Their Geological Significance 被引量:4
15
作者 ZHANGZuoheng MAOJingwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期503-514,共12页
Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age wi... Orogenically-derived gold deposits of the Zhongchuan area in the western Qinling are distributed in the exo-contact thermal metamorphic zone. The country rocks hosting the deposits are predominantly of Devonian age with low-grade metamorphism and strong deformation with the ore deposits directly controlled by multi-level tectonic systems. Three types of inclusions from these deposits have been recognized: CO2-H2O, CO2-rich, and aqueous. The ore-forming fluids were mainly CO2-NaCl-H2O type characterized by rich CO2, low salinity, high temperature and immiscibility. Incorporated with earlier isotopic data, the regional geological setting and features of diagenesis and metallogeny, it can be concluded that the ore-forming fluids were derived from deep magma and mixed with meteoric and metamorphic water. The deposits formed during an intra-continent collisional orogeny, and some of the materials derived from the deep might have been involved in the ore-forming process. 展开更多
关键词 fluid inclusion orogenic gold deposit Zhongchuan area western qinling
下载PDF
Junction and Evolution of the Qinling,Qilian and Kunlun Orogenic Belts 被引量:6
16
作者 SUN Yangui CHEN Zhengxing +2 位作者 LIU Yong’an WANG Tongqing ZHANG Zhiyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期223-228,共6页
As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reape... As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults. 展开更多
关键词 central mountains qinling Qilian and Kunlun orogenic belts junction and evolution intracontinental transform fault
下载PDF
Petrogenesis and tectonic implications of Early Cretaceous andesitic-dacitic rocks,western Qinling(Central China):Geochronological and geochemical constraints 被引量:3
17
作者 Feifei Zhang Peter A. Cawood +1 位作者 Yunpeng Dong Yuejun Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第4期1507-1520,共14页
40Ar/39Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis an... 40Ar/39Ar and zircon U-Pb geochronological and whole-rock geochemical analyses for the Laozanggou intermediate-acidic volcanic rocks from the western Qinling orogenic belt,Central China,constrain their petrogenesis and the nature of the Late Mesozoic lithospheric mantle.These volcanic rocks yield hornblende or whole-rock 40Ar/39Ar plateau ages of 128.3-129.7 Ma and zircon U-Pb age of131.3±1.3 Ma.They exhibit SiO2 of 56.86-66.86 wt.%,K2 O of 0.99-2.46 wt.%and MgO of 1.03-4.47 wt.%,with Mg#of 42-56.They are characterized by arc-like geochemical signatures with significant enrichment in LILE and LREE and depletion in HFSE.All the samples have enriched Sr-Nd isotopic compositions with initial 87Sr/86Sr ratios ranging from 0.7112 to 0.7149 andεNd(t)values from 10.2 to 6.3.Such geochemical signatures suggest that these volcanic rocks were derived from enriched lithospherederived magma followed by the assimilation and fractional crystallization(AFC)process.The generation of the enriched lithospheric mantle is likely related to the modification of sediment-derived fluid in response to the Triassic subduction/collision event in Qinling orogenic belt.The early Cretaceous detachment of the lithospheric root provides a reasonable mechanism for understanding the petrogenesis of the Laozanggou volcanic sequence in the western Qinling orogenic belt. 展开更多
关键词 40Ar/39Ar and zircon U-Pb geochronology SR-ND isotopes Early Cretaceous AFC process Continental LITHOSPHERIC mantle WESTERN qinling orogenIC belt
下载PDF
Petrogenesis and tectonic implications of Indosinian granitoids from Western Qinling Orogen,China:Products of magma-mixing and fractionation 被引量:6
18
作者 Xiao Xiong Laimin Zhu +5 位作者 Guowei Zhang M.Santosh Hang Jiang Jun Zheng Anlin Guo Lele Ding 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1305-1321,共17页
The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associat... The Western Qinling Orogen(WQO) is characterized by voluminous distribution of Indosinian granitoids,the formation of which provides an important window to unravel the geochemical and geodynamic evolution and associated metallogeny.Here we investigate a group of intrusions termed "Five Golden Flowers" based on petrological,geochemical,zircon U-Pb geochronological and Lu-Hf isotopic studies on the granitoids and their mafic microgranular enclaves(MMEs).Our results show that these intrusions are genetically divided into two types,namely,magma-mixing and highly fractionated.The Jiaochangba,Lujing,Zhongchuan,and Luchuba granitoids are biotite monzogranites(220±0.8 Ma to 217±2.6 Ma) with abundant coeval MMEs(220±.1 Ma to 217±2.7 Ma).The rocks contain moderate to high SiO2,high MgO,Rb,Sr,Ba,and Th contents,but low TiO2,P2 O5,and Sc values,A/CNK of <1.1,and a range of εHf(t) values of-11.7 to +2.23 with corresponding TDM2values of 1967-1228 Ma.The MMEs possess K-feldspar megacrysts,abundant acicular apatites,and show lopsided textures.They have lower SiO2,Al2 O3,and Th contents,but higher MgO,TiO2,and Sc,with εHf(t) values of-18.0 to +3.18 and TDM1 of 849-720 Ma.The data indicate that the MMEs were derived from a magma sourced from the enriched lithospheric mantle.We suggest that these host granitoids were produced by partial melting of latePaleoproterozoic to early-Mesoproterozoic lower crust with the involvement of Neoproterozoic SCLM-derived mafic magmas.The Baijiazhuang pluton is dominantly composed of leucogranite(muscovite granite and twomica monzogranite,216±1.5 Ma) without MMEs.The rocks are peraluminous with high A/CNK(1.06-1.27).Compared with the other four granitoids,the Baijiazhuang leucogranite shows higher SiO2 content,markedly lower concentrations of TiO2,MgO,Al2 O3,CaO,and Fe2 O3T,and lower LREE/HREE and(La/Yb)N values.These leucogranites are also rich in Rb,Th,and U,and display marked depletions in Ba,Sr,Ti,and Eu,indicating that they experienced significant fractionation.Zircon εHf(t) values(-10.2 to-3.27) and TDM2(1868-1424 Ma),as well as the Nb/Ta and K2 O/Na2 O values are similar to the other four granitoids,indicating that they are likely to have been derived from a similar source;with sediments playing only a minor role in the magma generation.The low contents of Yb and Y suggest that their partial melting was controlled by garnets and micrographic texture of K-feldspar reflects high-temperature melting through undercooling.Based on the above features,we infer that the Baijiazhuang leucogranite likely represents the product of high degree fractionation of the I-type biotite monzogranite magma which generated the other four granitoids at relatively high temperatures,within magma chambers at mid-crust depths.We propose that the granitoid suite was formed in the transitional setting from synto post-collision during the collisional orogeny between the SCB and NCB,following break-off of the subducted South China Block lithosphere during 220-216 Ma. 展开更多
关键词 GRANITOIDS Western qinling orogen MMEs Magma mixing FRACTIONATION Syn-to post-collisional transition
下载PDF
Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit,Qinling Orogen:Constraints from titanite U-Pb and molybdenite Re-Os dating 被引量:9
19
作者 Hui Zheng Huayong Chen +3 位作者 Dengfeng Li Chao Wu Xi Chen Chun-kit Lai 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1581-1592,共12页
The newly-discovered supergiant Huayangchuan uranium(U)-polymetallic(Sr,Se,REEs,Ba,Nb and Pb)deposit is located in the Qinling Orogen,central China.The deposit underwent multistage mineralization,with the main carbona... The newly-discovered supergiant Huayangchuan uranium(U)-polymetallic(Sr,Se,REEs,Ba,Nb and Pb)deposit is located in the Qinling Orogen,central China.The deposit underwent multistage mineralization,with the main carbonatite ore stage being the most important for the U,Nb,REE,Sr and Ba endowments.According to the mineral assemblages,the main carbonatite ore stage can be divided into three substages,i.e.,sulfate(Ba-Sr),alkali-rich U and REE-U mineralization.Main-stage titanite from the Huayangchuan igneous carbonatite are rich in high field strength elements(HFSEs,e.g.,Zr,Nb and REEs),and show clear elemental substitutions(e.g.,Ti vs.Nb+Fe+Al and Ca+Ti vs.Fe+Al+REE).High-precision LA-ICP-MS titanite dating yielded a U-Pb age of 209.0±2.9 Ma,which represents the mainstage mineralization age at Huayangchuan,and is coeval with the local carbonatite dyke intrusion.This mineralization age is further constrained by the Re-Os dating of molybdenite from the Huayangchuan carbonatite,which yielded a weighted mean age of 196.8±2.4 Ma.Molybdenite Re contents(337.55-392.75 ppm)and C-OSr-Nd-Pb isotopic evidence of the Huayangchuan carbonatite both suggest a mantle origin for the carbonatite.Our study supports that the Late Triassic carbonatite magmatism was responsible for the world-class U-Mo-REE mineralization in the Qinling Orogen,and that the regional magmatism and ore formation was likely caused by the closure of the Mianlue ocean and the subsequent North China-South China continent-continent collision. 展开更多
关键词 Carbonatite-hosted U-Polymetallic deposits Titanite U–Pb dating Molybdenite Re–Os dating Huayangchuan deposit qinling orogen
下载PDF
The Latest In-Situ Uraninite U-Pb Age of the Guangshigou Uranium Deposit, Northern Qinling Orogen, China: Constraint on the Metallogenic Mechanism 被引量:4
20
作者 WU Yong QIN Mingkuan +3 位作者 GUO Dongfa FAN Guang LIU Zhangyue GUO Guolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2445-2447,共3页
Objective The Guangshigou uranium deposit is located in the eastern part of the Shangdan triangular domain, which is currently the most productive pegmatite-hosted uranium deposit in China. Previous studies have focus... Objective The Guangshigou uranium deposit is located in the eastern part of the Shangdan triangular domain, which is currently the most productive pegmatite-hosted uranium deposit in China. Previous studies have focused on the migration and precipitation of uraninite and biotite clusters in the uraniferous pegmatites(Li Yanhe et al., 2016; Yuan et al., 2018). However, the accurate uranium mineralization age still remains poorly constrained, thus 展开更多
关键词 PB China Constraint on the Metallogenic Mechanism Northern qinling orogen
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部