The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we inv...The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.展开更多
The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before enter...The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.展开更多
The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-...The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.展开更多
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHR...Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.展开更多
The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian an...The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian and less commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism. The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite fades in the Fuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies (garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220–260 Ma. This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolite facies belong to the typical medium-pressure type which shows geothermal gradients of about 17–20 ***C/km and was probably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulite facies belongs to the low-pressure type which shows geothermal gradients of about 25–38 ***C/km and was probably affected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculated from the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place during an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch metamorphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch metamorphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.展开更多
The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) p...The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) plate evolution (0.8–0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic.展开更多
The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north ...The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.展开更多
This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South ...This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.展开更多
A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in the...A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.展开更多
The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South...The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.展开更多
The Late Triassic witnessed significant collisional orogenic events in the Qinling orogenic belt,accompanied by magma underplating and tectonic deformation.These processes potentially resulted in substantial crustal t...The Late Triassic witnessed significant collisional orogenic events in the Qinling orogenic belt,accompanied by magma underplating and tectonic deformation.These processes potentially resulted in substantial crustal thickening and uplift of the Qinling orogen.However,due to the absence of igneous rock records from this period in the eastern section of the Qinling orogen,the changes in crustal thickness during this orogenic process have not been thoroughly investigated.A series of foreland basins emerged during the Early Mesozoic to the south of the East Qinling orogenic belt.These basins have preserved clastic sedimentary rocks derived from the uplift and erosion of the orogenic belt.These sedimentary records serve as crucial records to reconstruct the evolutionary history of the Qinling orogen.To further clarify the collisional orogenic process of the Qinling orogenic belt,this study conducted in situ volcanic lithic fragment geochemistry,detrital zircon U-Pb chronology and trace element composition analysis on the sandstones of the Lower Jurassic Tongzhuyuan Formation in the Zigui Basin.The results suggest that the sandstones,which exhibit a significant abundance of volcanic lithic fragments,has a characteristic detrital zircon age group of 250–200 Ma,indicating a major provenance from the Triassic volcanic rocks.Combined with regional correlation and paleocurrent analysis,the detrital zircon U-Pb age data show that the source area of volcanic rocks should be in the Qinling orogenic belt to the north of the basin.This interpretation is further supported by the Triassic granitic rocks exposed in the western part of the orogenic belt,representing the magmatism during the Triassic collisional orogenesis in the Qinling orogen.Based on the co-varying relationships between present-day crust thickness with the chemical compositions of granite rocks and zircons,the La/Yb ratio of volcanic lithic fragments in the Tongzhuyuan Formation and the Eu/Eu*ratio of detrital zircons with Triassic ages indicate that the Qinling orogen experienced crustal thickening during the Late Triassic,reaching its maximum thickness of 60–70 km at ca.220–210 Ma.This crustal thickening in the eastern Qinling orogen is temporally consistent with that in the western orogen as recorded by the Triassic granitic rocks and may be related to large-scale crustal shortening and magmatism during the collisional orogeny.展开更多
Paleozoic cherts from the Mianl and the Erlangping ophiolite zones of the Qinling orogenic belt are characterized by low Si/Al ratios (52.14-683.52 in the Mianle cherts, 12.29-58.62 in the Erlangping cherts), Fe2O3 (0...Paleozoic cherts from the Mianl and the Erlangping ophiolite zones of the Qinling orogenic belt are characterized by low Si/Al ratios (52.14-683.52 in the Mianle cherts, 12.29-58.62 in the Erlangping cherts), Fe2O3 (0.01-0.35 and 0.02-1.24) and high Al2O3/(Al2O3+Fe2O3) ratios (0.82-0.99 and 0.83-0.99). The negative correlation between Si2O and Al2O3 in the cherts reflects the important role of terrigenous components. The Erlangping cherts have Lan/Cen=0.9-1.15 and Ce/Ce*=0.95-1.15 with low contents of V, Ni and Cu, consistent with those of cherts forming on the continental margin. In contrast, the Ce/Ce* ratios of the Mianle cherts range from 0.71 to 1.18 and Lan/Cen from 0.88 to 1.43 with slightly high V, Ni and Cu, which are similar to cherts found in the mid-ocean ridges and pelagic basins. Combined with the features of basic lavas associated with the cherts, it is suggested that during the Paleozoic, when the back-arc basin represented by the Erlangping ophiolite commenced shrinking in size in the mid-Ordovician, the southern Qinling was still in an extensional regime and finally grew into a new limited oceanic basin in the early Carboniferous.展开更多
The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonia...The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.展开更多
The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt i...The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt in China,and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia.Previous studies have shown that the Dabashan and Micangshan-Hannan Dome(MHD)in the South Qinling orogenic belt were uplifted during the Mesozoic.However,the magnitude of the uplift remains unclear.In this study,using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling,we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD,along with the effective elastic thickness(Te)of the Sichuan Basin.The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous,respectively.Therefore,we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift.The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic.Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west,whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast.The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous,and Tedecreased from 73 to 57 km.This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.展开更多
Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor nati...Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.展开更多
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import...Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.展开更多
The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and gar...The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.展开更多
The Qinling orogenic belt is a collision zone between the North China and Yangtze cratons. The Qinling Complex is a Precambrian metamorphic complex, developed in the inner zone of the orogenic belt , which records the...The Qinling orogenic belt is a collision zone between the North China and Yangtze cratons. The Qinling Complex is a Precambrian metamorphic complex, developed in the inner zone of the orogenic belt , which records the metamorphic and deformational history and PTt path of the regional meta-morphism of the collision zone . The present paper studies the metamorphic and deformational history and the PTt path of various tectono-metamorphic cycles in order to describe the geodynamic processes prevailing in that part of the Qinling orogenic belt since Proterozoic.The tectonometamorphic history and evolution of the Qinling Complex is divided into two stages: the stage of formation and the stage of modification During the stage of formation dated as Proterozoic,three deformational sequences are recognized. The amphibolite facies regional metamorphism is earlier than or synchronous with the first or second phase of folding. Three metamorphic zones, i.e. And-Ms ,Sil- Ms, Sil Kfs are delimited. During the stage of modification , the emplacement of Caledonian granite , superimposed thermal aureole (garnet K feldspar zone )and the development of ductile shear zones are major events.Metamorphic reactions are reconstructed in terms of analysis of re-equilibrium textures. Geothermobarometric calculations are conducted to calibrate the PT conditions of metamorphism .The metamorphic PTt paths have been estabh'shed. The PTt path of the Proterozoic tectonometamorphic cycle shows a clockwise pattern and is characterized by prominent decompression. The PTt path of the Caledonian tectonometamorphic cycle is characterized first by PT rising ,then isothermal decompression (rapid uplift), and finally by isobaric cooling The PTt path of the two tectonometamorphic cycles evidence the geodynamic processes: two major stages of collision and uplift in the Proterozoic and Caledonian Hercynian periods, respectively, during the evolution of Qinling orogenic belt.展开更多
The problem of the eastward extension of Qinling sea of Late Hercynian -Early Indosinian has always been in suspension. The present paper makes an assumption that the Qinling rock-group should be a tectonic complex co...The problem of the eastward extension of Qinling sea of Late Hercynian -Early Indosinian has always been in suspension. The present paper makes an assumption that the Qinling rock-group should be a tectonic complex consisting of complicated structural slices of different ages according to the new discovery of radiolarias and other faunas in the Yanlinggou rock-formation in the area around eastern Qinling-Toughai Mountains. The discovery of the Early Triassic radiolarias in Tongbai Mountain and the analysis of the paleogeography of the Yangtze and North China plate margins indicate the existence of eastern Qinling-Tongbai-Dabie sea of Late Hercynian-Early Indosinian, which is considered to be the eastward extension of the western Qinling rift trough. The rift trough was closed by the convergent collision between the Yangtze and North China plates in Middle to Late Triassic.展开更多
The West Qinling Orogen(WQO)is located in the western part of the Qinling Orogen and in the transition zone of Qilian Orogen,Songpan-Garze Orogen and Yangtze Block,and also the key position of Triassic collision oroge...The West Qinling Orogen(WQO)is located in the western part of the Qinling Orogen and in the transition zone of Qilian Orogen,Songpan-Garze Orogen and Yangtze Block,and also the key position of Triassic collision orogenic event.The study of the Early Triassic strata in the WQO is contributed to analyze the closure process of the paleo-Tethys.We conducted LA-ICP-MS U-Pb dating studies on detrital zircons to determine the provenance,depositional age,and tectonic setting of the Early Triassic Longwuhe Formation in the Lintan area of the WQO.The results show that the majority of the detrital zircons in the Longwuhe Formation are mainly magmatic origin and have characteristic of crust source zircon.The lowest limit of sedimentation of the Longwuhe Formation is constrained to the Early Triassic,with the youngest detrital zircon age of 253±3 Ma.The ages can be divided into five age groups:3346–1636 Ma,with two peak ages of ca.2495 and ca.1885 Ma;1585–1010 Ma,with a peak age at ca.1084 Ma;992–554 Ma,with a peak age at ca.939 Ma;521–421 Ma,with a peak age at ca.445 Ma;418–253 Ma,with a peak age at ca.280 Ma.Apparently,the sources of the Longwuhe Formation include the northern margin of the WQO,the Qilian Orogen(QLO)and the basement of the southern margin of the North China Block(NCB),of which the ancient basement of the southern margin of the NCB is the main source area of the Longwuhe Formation.Combined with previous studies,we propose that the Longwuhe Formation was formed in a fore-arc basin,which is related to the closure of the A’nyemaqen-Mianlüe Ocean from the Early Permian to Early–Middle Triassic due to the northward subduction-collision of the Yangtze Block(YZB).This also indicates that the A’nyemaqen-Mianlüe Ocean has flat subduction characteristics.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2021YFC2901902 and 2019YFC0605202)。
文摘The Guanpo pegmatite field in the North Qinling orogenic belt(NQB),China,hosts the most abundant LCT pegmatites.However,their emplacement conditions and structural control remain unexplored.In this contribution,we investigated it combining pegmatite orientation measurement with oxygen isotope geothermometry and fluid inclusion study.The orientations of type A1 pegmatites(P_(f)<σ_(2))are predominantly influenced by P-and T-fractures due to simple shearing in Shiziping dextral thrust shear zone during D_(2)deformation,whereas type A2 pegmatites(contemporaneous with D_(4))are governed by hydraulic fractures aligned with S_(0)and S_(0+1)stemming from fluid pressure(P_(f)<σ_(2)).Additionally,type B pegmatites(P_(f)≤σ_(2))exhibit orientations shaped by en echelon extensional fractures in local ductile shear zones(contemporaneous with D_(3)).The albite-quartz oxygen isotope geothermometry and microthermometric analysis of fluid inclusions in elbaites from the latest pegmatites(including types B and A2)suggest that the crystallization P-T for late magmatic and hydrothermal stages are 527.5-559.2℃,320℃,3.1-3.6 kbar and 2.0 kbar,respectively.Our observations along with previous studies suggest that the genesis of the LCT pegmatites was a long-term,multi-stage event during early Paleozoic orogeny(including the collision stage)of the NQB,and was facilitated by various local fractures.
基金substantially supported by the National Nature Science Foundation of China(Grant No.41872220)。
文摘The North Qinling Orogenic Belt(NQOB)is a composite orogenic belt in central China.It started evolving during the Meso-Neoproterozoic period and underwent multiple stages of plate subduction and collision before entering intra-continental orogeny in the Late Triassic.The Meso-Cenozoic intra-continental orogeny and tectonic evolution had different responses in various terranes of the belt,with the tectonic evolution of the middle part of the belt being particularly controversial.The granites distributed in the Dayu and Kuyu areas in the middle part of the NQOB can provide an important window for revealing the geodynamic mechanisms of the NQOB.The main lithology of Dayu and Kuyu granites is biotite monzogranite,and the zircon U-Pb dating yielded intrusive ages of 151.3±3.4 Ma and 147.7±1.5 Ma,respectively.The dates suggest that the biotite monzogranite were formed at the end of the Late Jurassic.The whole-rock geochemistry analysis shows that the granites in the study areas are characterized by slightly high SiO_(2)(64.50-68.88 wt%)and high Al_(2)O_(3)(15.12-16.24 wt%)and Na_(2)O(3.55-3.80 wt%)contents.They are also enriched in light rare earth elements,large ion lithophile elements(e.g.,Ba,K,La,Pb and Sr),and depleted in high field strength elements(HFSEs)(e.g.,Ta,Nb,P and Ti).Additionally,the granites have weakly negative-slightly positive Eu anomalies(δEu=0.91-1.19).Zircon Lu-Hf isotopic analysis showedε_(Hf)(t)=-6.1--3.8,and the two-stage model age is T_(2DM(crust))=1.5-1.6 Ga.The granites in the study areas are analyzed as weak peraluminous high-K calc-alkaline I-type granites.They formed by partial melting of the thickened ancient lower crust,accompanied by the addition of minor mantle-derived materials.During magma ascent,they experienced fractional crystallization,with residual garnet and amphibole for a certain proportion in the magma source region.Comprehensive the geotectonic data suggest that the end of the Late Jurassic granite magmatism in the Dayu and Kuyu areas represents a compression-extension transition regime.It may have been a response to multiple tectonic mechanisms,such as the late Mesozoic intra-continental southward subduction of the North China Craton and the remote effect of the Paleo-Pacific Plate subduction.
文摘The superlarge Baguamiao, large Liba and Xiaogouli gold deposits represent three typical gold deposits different from the Carlin type in the western Qinling Orogenic Belt. Based on Ar-Ar dating of quartz from ores, U-Pb dating of single zircon from granite, tracing of H and O isotopes and studies on the mineralogy and texture of spots and bleached alteration developed in wall rocks, this paper focuses the relations between gold deposits and granite to clarify the origin of gold deposits and the metallogenesis in the tectonic evolution of the Qinling Orogenic Belt. The comprehensive studies show that the age of the granite (148.1-244 Ma) is identical with that of the gold deposits (131.91-232.56 Ma). It is suggested that the granite has close temporal, spatial and genetic relationship with the gold deposits. The granite provides a heat source, water source and considerable amount of ore-forming material. Finally, it is concluded that the orogeny by collision, emplacement of the granite and positioning of the gold deposits represent a successive process. Both the granite and gold deposits resulted from the syn-orogeny and post-orogeny tectonic evolution.
基金supported by the National projects of Scientific and Technological Support (Grant Nos.2011BAB04B05 and 2006BAB01A11)National Natural Science Foundation of China (Grant Nos.41072143 and 41072169)
文摘Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U-Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb) N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of 8.79 to 5.38, depleted mantle Nd model ages (T DM ) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios ( 87 Sr/ 86 Sr) i from 0.7061 to 0.7082, indicating a possible Meso-to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher ( 87 Sr/ 86 Sr) i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.
文摘The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites, ***qüartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian and less commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism. The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite fades in the Fuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies (garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220–260 Ma. This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolite facies belong to the typical medium-pressure type which shows geothermal gradients of about 17–20 ***C/km and was probably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulite facies belongs to the low-pressure type which shows geothermal gradients of about 25–38 ***C/km and was probably affected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculated from the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place during an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch metamorphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch metamorphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.
基金This project was supported by grants from the Ministry of Science and Technology(969140104)the General Bureau of Geology and Exploration under theformer CNNC(98-D-1).
文摘The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) plate evolution (0.8–0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic.
基金financially supported by the National Nature Science Foundation of China(Grant No.41772233,41272220)the China Geological Survey(Grant No.DD20189613)grants from the Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J1708)
文摘The Baishuijiang Group, located in the southwest Qinling orogenic belt, is divided into three belts according to the characteristic of the matrix and rock blocks based on the large scale geological mapping. The north belt and south belt are composed of abyssal mudstone and siltstone, and limestone, chert and basic and ultrabasic rock blocks. The middle belt consists of a few limestone blocks and turbidites, which were formed in the trench environment. At present, in the Baishuijiang Group, many fossils were found in matrix and rock blocks, the fossils contain the Cambrian small shell fossils(Xiao, 1992;Tao et al., 1992), Silurian chitinozoas, scolecodonts and spores, and Ordovician graptolites, and middle Devonian Coral and conodonts in limestone and chert blocks(Wang et al., 2011a), and Permian radiolarians in the matrix(Wang et al., 2007). The volcanic rock blocks have undergone different degree of metamorphism. Their geochemical characteristics indicate that the rocks are similar to oceanic island arc and seamount(Wang et al., 2009), and SHRIMP U-Pb dating yielded ages from Neoproterozoic to early Paleozoic(Yan et al., 2007;Wang et al., 2009, 2011b). Therefore, comprehensive analysis of regional data, the Baishuijiang group is an accretionary complex which was consisted of matrix and blocks, and was finally formed during Permian-Triassic.
基金This study was supported by the National Natural Science Foundation of China Grant No.49290102.
文摘This paper reports 48 feldspar lead isotope analyses from 27 granitic intrusions,which formed from the Late Proterozic to Mesozoic within the Eastern Qinling oregenic belt. Itis found that the granitic rocks of South Qinling are characterized by a strong block-effect anddepletion in U-Pb and Th-Pb, showing that these rocks came from the same lead isotopetectono-geochemical province, while those of North Qinling are characterized by higher U-Pband Th-Pb for Late Proterozoic to Early Paleozoic ones and lower U-Pb and Th-Pb forLate-Palaeozoic and younger ones in their feldspar lead isotopic composition. In the NorthQinling block, lead isotopic signatures reflect that the source of granitic magma had changedsince the Late Palaeozoic. Comparison of feldspar lead isotopic composition between SouthQinling and North Qinling shows that there is marked difference in lead isotopic compositionfor pre-Palaeozoic granitoids, indicating that the South Qinling and the North Qinling blocksbelong to different tectonic units, but the similarities in lead isotopic composition are quiteclear, which indicates that the South Qinling block had been welded with the North Qinlingblock and that the magma sources of both blocks were identical. The analysis provides directevidence for underplating of the continental crust of South Qinling beneath the North Qinlingblock in the continent-continent interaction stage of the Eastern Qinling oregenic belt.
文摘A series of ductile shear zones of the overthrust and strike-slip-types and related ductile shear metamorphicrocks, including tectonic melange and mylonites. were formed in the core of the Qinling orogenic belt in thecourse of the Caledonian-Indosinian ductilc and brittle-ductile reworking. The study on their petrography. va-riations in composition and conditions of formation is conducive to revealing the metamorphism-deformationhistory of the core of the Qinling orogenic belt and further to understanding the dynamic mechanism of its evo-lution.
基金the National Natural Science Foundation of China who provided necessary financial support for this study(Nos.41872218,41572179,and 41372204)the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an for providing a special fund to accomplish this study.
文摘The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41888101,42102121,42122015)the China Geological Survey Project(Grant Nos.DD20230008,DD20221656)Guizhou Provincial Science and Technology Projects(Grant No.ZK[2022]General 081).
文摘The Late Triassic witnessed significant collisional orogenic events in the Qinling orogenic belt,accompanied by magma underplating and tectonic deformation.These processes potentially resulted in substantial crustal thickening and uplift of the Qinling orogen.However,due to the absence of igneous rock records from this period in the eastern section of the Qinling orogen,the changes in crustal thickness during this orogenic process have not been thoroughly investigated.A series of foreland basins emerged during the Early Mesozoic to the south of the East Qinling orogenic belt.These basins have preserved clastic sedimentary rocks derived from the uplift and erosion of the orogenic belt.These sedimentary records serve as crucial records to reconstruct the evolutionary history of the Qinling orogen.To further clarify the collisional orogenic process of the Qinling orogenic belt,this study conducted in situ volcanic lithic fragment geochemistry,detrital zircon U-Pb chronology and trace element composition analysis on the sandstones of the Lower Jurassic Tongzhuyuan Formation in the Zigui Basin.The results suggest that the sandstones,which exhibit a significant abundance of volcanic lithic fragments,has a characteristic detrital zircon age group of 250–200 Ma,indicating a major provenance from the Triassic volcanic rocks.Combined with regional correlation and paleocurrent analysis,the detrital zircon U-Pb age data show that the source area of volcanic rocks should be in the Qinling orogenic belt to the north of the basin.This interpretation is further supported by the Triassic granitic rocks exposed in the western part of the orogenic belt,representing the magmatism during the Triassic collisional orogenesis in the Qinling orogen.Based on the co-varying relationships between present-day crust thickness with the chemical compositions of granite rocks and zircons,the La/Yb ratio of volcanic lithic fragments in the Tongzhuyuan Formation and the Eu/Eu*ratio of detrital zircons with Triassic ages indicate that the Qinling orogen experienced crustal thickening during the Late Triassic,reaching its maximum thickness of 60–70 km at ca.220–210 Ma.This crustal thickening in the eastern Qinling orogen is temporally consistent with that in the western orogen as recorded by the Triassic granitic rocks and may be related to large-scale crustal shortening and magmatism during the collisional orogeny.
基金This project was jointly supported by the NationalNatural Science Foundation of China (Grant Nos. 40372039,40032010-C, 40133020 and 49732080)the Foundations of Senior Visiting Scholarship of Colleges in Western areas and Backbone Teacher of Ministry of Education, China (Grant No. 2000-143).
文摘Paleozoic cherts from the Mianl and the Erlangping ophiolite zones of the Qinling orogenic belt are characterized by low Si/Al ratios (52.14-683.52 in the Mianle cherts, 12.29-58.62 in the Erlangping cherts), Fe2O3 (0.01-0.35 and 0.02-1.24) and high Al2O3/(Al2O3+Fe2O3) ratios (0.82-0.99 and 0.83-0.99). The negative correlation between Si2O and Al2O3 in the cherts reflects the important role of terrigenous components. The Erlangping cherts have Lan/Cen=0.9-1.15 and Ce/Ce*=0.95-1.15 with low contents of V, Ni and Cu, consistent with those of cherts forming on the continental margin. In contrast, the Ce/Ce* ratios of the Mianle cherts range from 0.71 to 1.18 and Lan/Cen from 0.88 to 1.43 with slightly high V, Ni and Cu, which are similar to cherts found in the mid-ocean ridges and pelagic basins. Combined with the features of basic lavas associated with the cherts, it is suggested that during the Paleozoic, when the back-arc basin represented by the Erlangping ophiolite commenced shrinking in size in the mid-Ordovician, the southern Qinling was still in an extensional regime and finally grew into a new limited oceanic basin in the early Carboniferous.
基金supported by National Natural Science Foundation of China (Grant Nos. 40602026, 40772137)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of China (Grant No. J0720)+1 种基金Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAB01A11)the Geological Survey Project of China (Grant No. 1212010611807)
文摘The Dabao Formation in the South Qinling Orogenic Belt was previously regarded as Ordovician in age and consists of clastic matrix and blocks of siltstone,limestone,chert,and volcanic rocks.However,some Middle Devonian corals,conodonts,and other fossil fragments within the limestone blocks were discovered in recent field investigations,indicating that the Dabao Formation was formed during late Paleozoic.Combined with other regional geological data,the Dabao Formation in the Southern Qinling Orogenic Belt is considered to be a late Paleozoic or early Mesozoic accretionary complex.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731072,41574095)。
文摘The topographic evolution of continental orogens is important for understanding continental orogenic processes,geodynamic mechanisms,and climatic and environmental changes.The Qinling Orogen is a major orogenic belt in China,and its uplift history can provide insights into the tectonic configuration and geodynamics of China and East Asia.Previous studies have shown that the Dabashan and Micangshan-Hannan Dome(MHD)in the South Qinling orogenic belt were uplifted during the Mesozoic.However,the magnitude of the uplift remains unclear.In this study,using sedimentary records in the northern Sichuan Basin and lithospheric flexural modeling,we estimated the magnitude of Mesozoic uplift of the Dabashan and MHD,along with the effective elastic thickness(Te)of the Sichuan Basin.The Dabashan and MHD were uplifted by approximately 1220 and 880 m during the Middle Jurassic and Early Cretaceous,respectively.Therefore,we propose that the present-day elevation of the Dabashan and MHD is primarily the result of Mesozoic uplift.The differences in the duration and amount of uplift between different tectonic units indicate that the uplift processes and driving mechanisms in the South Qinling orogenic belt were different in the Mesozoic and Cenozoic.Mesozoic uplift was the result of convergence of the North China and South China blocks advanced from east to west,whereas Cenozoic uplift was driven by ongoing indentation of the Indian Plate into Eurasia from southwest to northeast.The lithospheric strength of the northern Sichuan Basin was weakened from the Middle Jurassic to Early Cretaceous,and Tedecreased from 73 to 57 km.This may have been caused by the flexure-related bending stresses in the lithosphere that developed due to the large topographic loading.
基金financially supported by China Geological Survey Project(Grant No.DD20220971)。
文摘Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.
基金Supported by the National Science and Technology Major Project(2017ZX05001)CNPC Science and Technology Project(2021DJ22).
文摘Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic.
基金supported jointly by the National Natural Science Foundation of China (Grant Nos. 41030423,41072068 and 40872071)National Basic Research Program of China (Grant No. 2006CB403502)+2 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University (Grant No. BJ091349)National Found for Fostering Talents of Basic Sciences (Grant No. J0830519)Graduate Innovation and Creativity Funds of Northwest University,China (Grant No. 10YZZ24)
文摘The Dehe granitic pluton intruded the Xiahe Group which is in the core complex of the North Qinling Orogenic Belt(NQOB).It shows gneissic bedding and possesses typical S-type granite minerals such as muscovite and garnet.LA-ICP-MS U-Pb isotopic dating of the Dehe granite yielded a weighted average age of 925±23 Ma which represents the emplacement age of the pluton.Most of the εHf(t) values are negative,and the two-stage model ages are consistent with the age of the Qinling Group.The isotope data show that the Dehe granite was formed in the following geological setting:in the syn-collision setting of the NQOB in the Neoproterozoic,crustal thickening induced partial melting of materials derived from the Qinling complex,and then the maga upwelled and intruded into the Xiahe Group.The formation of the Dehe S-type granite implied the occurrence of a convergent event in the QOB during the Neoproterozoic.
文摘The Qinling orogenic belt is a collision zone between the North China and Yangtze cratons. The Qinling Complex is a Precambrian metamorphic complex, developed in the inner zone of the orogenic belt , which records the metamorphic and deformational history and PTt path of the regional meta-morphism of the collision zone . The present paper studies the metamorphic and deformational history and the PTt path of various tectono-metamorphic cycles in order to describe the geodynamic processes prevailing in that part of the Qinling orogenic belt since Proterozoic.The tectonometamorphic history and evolution of the Qinling Complex is divided into two stages: the stage of formation and the stage of modification During the stage of formation dated as Proterozoic,three deformational sequences are recognized. The amphibolite facies regional metamorphism is earlier than or synchronous with the first or second phase of folding. Three metamorphic zones, i.e. And-Ms ,Sil- Ms, Sil Kfs are delimited. During the stage of modification , the emplacement of Caledonian granite , superimposed thermal aureole (garnet K feldspar zone )and the development of ductile shear zones are major events.Metamorphic reactions are reconstructed in terms of analysis of re-equilibrium textures. Geothermobarometric calculations are conducted to calibrate the PT conditions of metamorphism .The metamorphic PTt paths have been estabh'shed. The PTt path of the Proterozoic tectonometamorphic cycle shows a clockwise pattern and is characterized by prominent decompression. The PTt path of the Caledonian tectonometamorphic cycle is characterized first by PT rising ,then isothermal decompression (rapid uplift), and finally by isobaric cooling The PTt path of the two tectonometamorphic cycles evidence the geodynamic processes: two major stages of collision and uplift in the Proterozoic and Caledonian Hercynian periods, respectively, during the evolution of Qinling orogenic belt.
文摘The problem of the eastward extension of Qinling sea of Late Hercynian -Early Indosinian has always been in suspension. The present paper makes an assumption that the Qinling rock-group should be a tectonic complex consisting of complicated structural slices of different ages according to the new discovery of radiolarias and other faunas in the Yanlinggou rock-formation in the area around eastern Qinling-Toughai Mountains. The discovery of the Early Triassic radiolarias in Tongbai Mountain and the analysis of the paleogeography of the Yangtze and North China plate margins indicate the existence of eastern Qinling-Tongbai-Dabie sea of Late Hercynian-Early Indosinian, which is considered to be the eastward extension of the western Qinling rift trough. The rift trough was closed by the convergent collision between the Yangtze and North China plates in Middle to Late Triassic.
基金supported financially by the National Nature Sciences Foundation of China(Nos.41872235,42172236,41872233,42072267,41802234,41602229 and 41502191)China Scholarship Council(No.201806565026)+3 种基金Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2019JM-312,2019JQ-090 and 2019JQ-209)China Geological Survey(Nos.12120114041201 and DD2016007901)China Postdoctoral Science Foundation(No.2016M592726)the Fundamental Research Funds for the Central Universities of China(Nos.300102270202,300103120009,202110710062,300103183081,300104282717,300102279204 and 201810710233).
文摘The West Qinling Orogen(WQO)is located in the western part of the Qinling Orogen and in the transition zone of Qilian Orogen,Songpan-Garze Orogen and Yangtze Block,and also the key position of Triassic collision orogenic event.The study of the Early Triassic strata in the WQO is contributed to analyze the closure process of the paleo-Tethys.We conducted LA-ICP-MS U-Pb dating studies on detrital zircons to determine the provenance,depositional age,and tectonic setting of the Early Triassic Longwuhe Formation in the Lintan area of the WQO.The results show that the majority of the detrital zircons in the Longwuhe Formation are mainly magmatic origin and have characteristic of crust source zircon.The lowest limit of sedimentation of the Longwuhe Formation is constrained to the Early Triassic,with the youngest detrital zircon age of 253±3 Ma.The ages can be divided into five age groups:3346–1636 Ma,with two peak ages of ca.2495 and ca.1885 Ma;1585–1010 Ma,with a peak age at ca.1084 Ma;992–554 Ma,with a peak age at ca.939 Ma;521–421 Ma,with a peak age at ca.445 Ma;418–253 Ma,with a peak age at ca.280 Ma.Apparently,the sources of the Longwuhe Formation include the northern margin of the WQO,the Qilian Orogen(QLO)and the basement of the southern margin of the North China Block(NCB),of which the ancient basement of the southern margin of the NCB is the main source area of the Longwuhe Formation.Combined with previous studies,we propose that the Longwuhe Formation was formed in a fore-arc basin,which is related to the closure of the A’nyemaqen-Mianlüe Ocean from the Early Permian to Early–Middle Triassic due to the northward subduction-collision of the Yangtze Block(YZB).This also indicates that the A’nyemaqen-Mianlüe Ocean has flat subduction characteristics.