期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mineralization-related geochemical anomalies derived from stream sediment geochemical data using multifractal analysis in Pangxidong area of Qinzhou-Hangzhou tectonic joint belt, Guangdong Province, China 被引量:5
1
作者 张焱 周永章 +8 位作者 王林峰 王正海 何俊国 安燕飞 李红中 曾长育 梁锦 吕文超 高乐 《Journal of Central South University》 SCIE EI CAS 2013年第1期184-192,共9页
Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies ... Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work. 展开更多
关键词 geochemical anomalies fractal modeling principal component analysis qinzhou-hangzhou joint tectonic belt streamsediments
下载PDF
粤西福湖岭加里东混合岩-花岗岩形成温度研究
2
作者 张俊浩 陈震 +2 位作者 陈国能 丁汝鑫 彭卓伦 《岩石学报》 SCIE EI CAS CSCD 北大核心 2017年第3期887-895,共9页
钦-杭结合带南段广泛发育加里东期的混合岩和混合花岗岩。研究这些混合岩和混合花岗岩形成的P-T条件,不但有助于了解加里东造山阶段本区地壳内部的温度特征,对于花岗岩浆形成以及大陆流变等理论问题的研究也有重要意义。本文讨论的福湖... 钦-杭结合带南段广泛发育加里东期的混合岩和混合花岗岩。研究这些混合岩和混合花岗岩形成的P-T条件,不但有助于了解加里东造山阶段本区地壳内部的温度特征,对于花岗岩浆形成以及大陆流变等理论问题的研究也有重要意义。本文讨论的福湖岭剖面位于钦-杭结合带南端,为一海边岩壁,其上出露分带清晰的加里东期混合岩-混合花岗岩,自上而下依次为斑点状混合岩、条纹状混合岩、窄条带状混合岩、宽条带状混合岩及混合花岗岩。作者在野外对剖面上不同类型的岩石进行了影像采样,在计算机上对采集影像样品进行处理,在统一阀值下转换成代表浅色体(熔体)和暗色体(未熔岩石或熔渣)的黑白影像,并统计浅色体的含量百分比(熔体比)。将由此得到的各类岩石熔融比数据投到用Winkler and von Platen(1961)的硬砂岩熔融实验数据构成的温度-熔体比曲线图上,获知该剖面混合岩的形成温度在630~705℃之间,原岩的熔断温度("脏"花岗岩浆生成温度)为705℃,岩石熔融时(439~445Ma)剖面的埋深大体处于当时地表以下7km左右。本文结合福湖岭剖面地质研究和岩石熔融实验数据建立的"熔融温度计",为混合岩-混合花岗岩形成温度的测定提供了一种新方法,不仅适用于福湖岭,也可用于其它地区。 展开更多
关键词 钦-杭结合带 福湖岭剖面 混合岩形成温度 岩石熔融实验 熔融温度计
下载PDF
Progress of Deep Geological Survey Project under the China Geological Survey 被引量:4
3
作者 Qing-tian Lü Jia-yong Yan +3 位作者 Xuan-hua Chen He-sheng Hou Wen-shi Wang Yu-le Hu 《China Geology》 2020年第1期153-172,共20页
Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankin... Serving as a way to understand the material composition,structure,and dynamic process of the Earth's interior,deep earth exploration is driven by not only mankind's pursuit of natural mysteries but also mankind's basic need to obtain resources and guarantee economic and social development.The first phase of deep earth exploration of China(SinoProbe)was carried out from 2008 to 2016 and tremendous results were achieved.In 2016,the China Geological Survey launched a Deep Geological Survey Project(also referred to as the Project)to continuously explore the deep Earth.Focusing on the national energy resources strategy,the Belt and Road Initiative,and major basic issues of the geological survey,the Project was carried out in Songliao Basin(an important energy base in China)and major geological boundaries and tectonic units including Qilian Mountains-Tianshan Mountains and Qinzhou-Hangzhou juncture belt.The purpose of it is to reveal the process,structure,and forming patterns of the deep ore deposits and petroleum reservoirs,clarify the evolutionary pattern and controlling factors of Mesozoic environmental climate,and discover deep fine structures of key orogens,basins,and mountains by comprehensive geophysical exploration and scientific drilling.Great achievements have been obtained after more than three years of efforts,including a cumulative 1552 km of deep seismic reflection profiles and magnetotelluric profiles,an ultra-deep continental scientific crilling well,a scientific drilling pilot hole,and a magnetotelluric array and a portable broadband seismic array,both of which cover South China.Moreover,significant progress has been made in ultra-deep drilling technology,deep oil and gas discovery in Songliao Basin,and basic geological issues of Qilian Orogen and Qinzhou-Hangzhou juncture belt in South China,greatly accelerating the deep earth exploration in China and further consolidating China's position as a power in deep earth exploration. 展开更多
关键词 Deep geological survey Deep oil and gas discovery Ultra-deep scientific drilling technology Songke No.2 well Qilian Mountains-Tianshan Mountains qinzhou-hangzhou juncture belt Songliao Basin China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部