Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control...Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.展开更多
The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite r...The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.展开更多
Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term ...Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.展开更多
Using analyses of the lithology,sequences,paleoenvironment,and tectonic setting,the depositional system of the Carboniferous Huanglong Formation in the eastern Sichuan Basin was identified.The lithological characteris...Using analyses of the lithology,sequences,paleoenvironment,and tectonic setting,the depositional system of the Carboniferous Huanglong Formation in the eastern Sichuan Basin was identified.The lithological characteristics of the Lower Member,Middle Member,and Upper Member were analyzed and classified.Before the use of carbon,oxygen,and strontium isotopes in the analysis,all of the geochemical data were tested for validity.On the basis of the Z values obtained from carbon and oxygen isotopes,the paleoenvironments of the three members were elucidated.Lower Member was dominantly an enclosed marine environment with intense evaporation and little freshwater input into the sea.Middle Member developed in a semi-enclosed to normal marine environment with many rivers.Upper Member was formed in a normal marine environment.The east Sichuan Basin was enclosed by paleouplifts before the deposition of the Huanglong Formation,forming a relatively enclosed depositional setting.Paleogullies developed in the Silurian strata that underlie the Carboniferous rocks;these paleogullies can be identified.On the basis of a comprehensive analysis,we propose that the Huanglong Formation developed in a platform system.Four microfacies were identified:supratidal flat,dolostone flat,grain shoal,and shelf microfacies.The high-permeability and high-porosity characteristics of the grain shoal microfacies are favorable for hydrocarbon accumulation,while the supratidal flat and shelf microfacies developed very few high-quality reservoirs.The paleogullies,in which increased amounts of grain shoal microfacies developed,controlled the distribution of high-quality reservoirs.展开更多
Based on a comprehensive study of texture,diagenetic behavior and evolution of dolomite in the Huanglong Formation,trace (e.g.,Fe,Mn and Sr) and rare earth element (REE) geochemistry,andisotopic characteristics (...Based on a comprehensive study of texture,diagenetic behavior and evolution of dolomite in the Huanglong Formation,trace (e.g.,Fe,Mn and Sr) and rare earth element (REE) geochemistry,andisotopic characteristics (e.g.,C,O and Sr),four types of diagenetic fluids are identified in the Huanglong Formation dolomite reservoirs of the Eastern Sichuan Basin,China:1):marine-derived pore waters in the marine diagenetic environment,2) sabkha compaction brine conserved in the early shallowburied diagenetic environment,3) strongly-oxidizing low-temperature meteoric water in the seepagesubsurface flow diagenetic environment,and 4) strongly reducing deeply seated mixed hot brine in the middle and deep burial diagenetic environment.The fluids developed hereditarily from one environment to another,which resulted in its respective characteristics.Fluid characteristics play an important role in the development of dolomite reservoirs:1) dolomitization by marine-derived pore water in the quasisyngenetic stage did not form an effective reservoir; 2) early diagenetic burial dolomitization by the sabkha compaction brine formed the basis for reservoir development; 3) meteoric water karstification in the paleo-epidiagenetic stage expanded both the distribution and the size of the reservoirs,and improved the reservoir quality; 4) deep-burial dissolution and tectonic fracturing in the reburial diagenetic stage further improved reservoir porosity and permeability.展开更多
The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion ...The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.展开更多
The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the ...The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the sucrosic dolomite samples are carried out.It is found that the dolomite has typical features different from other kinds of dolomites:(1)This dolomite is generally medium-coarse in crystal size,and often associated with very finely to finely crystalline dolomite and cave-filling dolomite.(2)Typical identification marks of eogenetic karstification are developed at the top of the upward-shallowing sequence.(3)The medium-coarse crystalline sucrosic dolomite is cut by the early diagenetic karst fabric,and is characterized by dolomite with dissolution edge,dolomite vadose silt in pores,and transgression clay filling between the medium-coarse dolomite crystals.The medium-coarse crystalline sucrosic dolomite was formed earlier than the eogenetic karstification.The sucrosic dolomite with occasional cloudy core and clear rim has bright cathodoluminescence,high inclusions temperature,significant negative skewness carbon and oxygen isotopic compositions,and rare-earth element(REE)pattern similar to seawater,indicating it experienced two periods of dolomitization,evaporative concentration reflux-infiltration and penecontemporaneous seawater circulation hydrothermal fluid dolomitization.The study results not only update the understanding on the dolomitization time of Qixia Formation,demonstrate that the sucrosic dolomite can be formed in the penecontemporaneous stage when seawater reflux superimposed with hydrothermal fluid effects,but also show that the taphorogenesis in the Dongwu period began in the Early Permian.Moreover,the dolomite controlled by the grain bank migration and terrain in the slope break appears in bands of large scale,this knowledge provides basis for expanding the exploration field of this type of reservoirs.展开更多
Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely co...Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely corroded and replaced secondary calcic karstic rocks. The carbon, oxygen and strontium isotope compositions of the various karst rocks are analyzed systematically and compared to rocks without karst corrosion. The results indicate that(1) the Huanglong Formation in the eastern Sichuan Basin was a restricted bay supplied and controlled by freshwater in which mudmicrite and mud-dolomicrite exhibit low δ13C and δ18O values and high 87Sr/86 Sr ratios;(2) all types of karstic rocks in the paleokarst reservoirs of the Huanglong Formation in the research area are affected by atmospheric freshwater with the δ13C and δ18O values and 87Sr/86 Sr ratios in the original formation approaching those of atmospheric freshwater, which reflects ancient hydrological conditions, fluid properties, isotopic source and the fractionation effect;(3) the intensely corroded and replaced secondary limestone is affected by a variety of diagenetic fluids, often reflected by δ13C and δ18O values, while the 87Sr/86 Sr ratios exhibit the strong degree of the corrosion;(4) after comparing the 87Sr/86 Sr ratios of each type of karst rock, the diagenetic fluids are determined to be mainly atmospheric freshwater, and depending on the strength of corrosion, and the low 87Sr/86 Sr ratio fluids in the layer will participate in the karst process. The carbon, oxygen, and strontium isotopes of different karstic reservoirs can provide meaningful geochemical information for forecasting and evaluating the development and distribution rules of the Huanglong Formation at the margin of the eastern Sichuan Basin in time and space.展开更多
Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbon...Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.展开更多
近年来,合川地区栖霞组-茅口组钻获多口高产工业气流井,表明其具有良好的勘探前景。然而该地区整体勘探程度较低,储层特征及成因仍不明确,导致储层评价、预测难。基于潼深4井、合深6井等8口钻井的资料,开展岩芯、薄片、成像测井及孔渗...近年来,合川地区栖霞组-茅口组钻获多口高产工业气流井,表明其具有良好的勘探前景。然而该地区整体勘探程度较低,储层特征及成因仍不明确,导致储层评价、预测难。基于潼深4井、合深6井等8口钻井的资料,开展岩芯、薄片、成像测井及孔渗数据的储层特征分析,并优选样品开展基于氩离子抛光扫描电镜(scanning electron microscopy,SEM)及工业计算机断层扫描(computed tomography,CT)的储层孔喉结构微观表征。结果表明:四川盆地合川地区栖霞组-茅口组主要发育晶粒白云岩、含灰白云岩和灰质云岩,晶粒白云岩为主要的储层岩性,也是主要的储集空间载体。栖霞组白云岩储层以相对均匀发育的基质孔为主,整体具有中高孔、中渗的特征;茅口组白云岩储层主要以非均质分布的溶蚀孔洞和溶缝为主,也存在一定量的基质孔,整体具有中高孔、中高渗特征。基于工业CT的储层微观表征揭示栖霞组晶间(溶)孔分布相对均匀,而茅口组白云岩则非均质性强,晶间(溶)孔分布与裂缝无关,反映这些孔隙为早期孔隙的继承;基于扫描电镜的储层微观表征揭示栖霞组-茅口组都存在与晶体缺陷相关的微孔隙,表明除溶蚀孔洞外,晶间(溶)孔与微孔隙对储层物性同样具有重要贡献。研究成果对合川地区栖霞组-茅口组白云岩储层评价提供了一定的科学依据。展开更多
基金Supported by the National Natural Science Foundation of China(42172177)CNPC Scientific Research and Technological Development Project(2021DJ05)PetroChina-Southwest University of Petroleum Innovation Consortium Project(2020CX020000).
文摘Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.
文摘The Middle Permian Qixia Formation in the Shuangyushi area,northwestern Sichuan Basin,develops shoal-facies dolomite reservoirs.To pinpoint promising reservoirs in the Qixia Formation,deep thin shoal-facies dolomite reservoirs were predicted using the techniques of pre-stack Kirchhoff-Q compensation for absorption,inverse Q filtering,low-to high-frequency compensation,forward modeling,and facies-controlled seismic meme inversion.The results are obtained in six aspects.First,the dolomite reservoirs mainly exist in the middle and lower parts of the second member of Qixia Formation(Qi2 Member),which coincide with the zones shoal cores are developed.Second,the forward modeling shows that the trough energy at the top and bottom of shoal core increases with increasing shoal-core thickness,and weak peak reflections are associated in the middle of shoal core.Third,five types of seismic waveform are identified through waveform analysis of seismic facies.Type-Ⅰ and Type-Ⅱ waveforms correspond to promising facies(shoal core microfacies).Fourth,vertically,two packages of thin dolomite reservoirs turn up in the sedimentary cycle of intraplatform shoal in the Qi2 Member,and the lower package is superior to the upper package in dolomite thickness,scale and lateral connectivity.Fifth,in plane,significantly controlled by sedimentary facies,dolomite reservoirs laterally distribute with consistent thickness in shoal cores at topographical highs and extend toward the break.Sixth,the promising prospects are the zones with thick dolomite reservoirs and superimposition of horstegraben structural traps.
基金Project(41802147)supported by the National Natural Science Foundation of ChinaProject(2016ZX05007-004)supported by the National Major Science and Technology Projects of China。
文摘Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.
基金granted by the National Science and Technology Major Project(2011ZX05004-001)
文摘Using analyses of the lithology,sequences,paleoenvironment,and tectonic setting,the depositional system of the Carboniferous Huanglong Formation in the eastern Sichuan Basin was identified.The lithological characteristics of the Lower Member,Middle Member,and Upper Member were analyzed and classified.Before the use of carbon,oxygen,and strontium isotopes in the analysis,all of the geochemical data were tested for validity.On the basis of the Z values obtained from carbon and oxygen isotopes,the paleoenvironments of the three members were elucidated.Lower Member was dominantly an enclosed marine environment with intense evaporation and little freshwater input into the sea.Middle Member developed in a semi-enclosed to normal marine environment with many rivers.Upper Member was formed in a normal marine environment.The east Sichuan Basin was enclosed by paleouplifts before the deposition of the Huanglong Formation,forming a relatively enclosed depositional setting.Paleogullies developed in the Silurian strata that underlie the Carboniferous rocks;these paleogullies can be identified.On the basis of a comprehensive analysis,we propose that the Huanglong Formation developed in a platform system.Four microfacies were identified:supratidal flat,dolostone flat,grain shoal,and shelf microfacies.The high-permeability and high-porosity characteristics of the grain shoal microfacies are favorable for hydrocarbon accumulation,while the supratidal flat and shelf microfacies developed very few high-quality reservoirs.The paleogullies,in which increased amounts of grain shoal microfacies developed,controlled the distribution of high-quality reservoirs.
基金supported by the National Natural Science Foundation of China(Grant No.41002033)National Major Science and Technology Specific Project of China(2011ZX05030-003-02)+1 种基金Natural Science Key Project of Education Department in Sichuan(13ZA0058)Foundation for Fostering Middle-aged and Young Key Teachers of Chengdu University of Technology
文摘Based on a comprehensive study of texture,diagenetic behavior and evolution of dolomite in the Huanglong Formation,trace (e.g.,Fe,Mn and Sr) and rare earth element (REE) geochemistry,andisotopic characteristics (e.g.,C,O and Sr),four types of diagenetic fluids are identified in the Huanglong Formation dolomite reservoirs of the Eastern Sichuan Basin,China:1):marine-derived pore waters in the marine diagenetic environment,2) sabkha compaction brine conserved in the early shallowburied diagenetic environment,3) strongly-oxidizing low-temperature meteoric water in the seepagesubsurface flow diagenetic environment,and 4) strongly reducing deeply seated mixed hot brine in the middle and deep burial diagenetic environment.The fluids developed hereditarily from one environment to another,which resulted in its respective characteristics.Fluid characteristics play an important role in the development of dolomite reservoirs:1) dolomitization by marine-derived pore water in the quasisyngenetic stage did not form an effective reservoir; 2) early diagenetic burial dolomitization by the sabkha compaction brine formed the basis for reservoir development; 3) meteoric water karstification in the paleo-epidiagenetic stage expanded both the distribution and the size of the reservoirs,and improved the reservoir quality; 4) deep-burial dissolution and tectonic fracturing in the reburial diagenetic stage further improved reservoir porosity and permeability.
基金Supported by the Special Project of National Key R&D Plan(2017YFC0603106).
文摘The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs.
基金Supported by the National Science&Technology Major Project of China(2016ZX05004002-001)Natural Science Foundation(41802147)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance
文摘The characteristics,formation time,and origin of the sucrosic dolomite reservoirs in the Permian Qixia Formation of northwestern Sichuan Basin are analyzed.Core and outcrop description and microscopic analysis of the sucrosic dolomite samples are carried out.It is found that the dolomite has typical features different from other kinds of dolomites:(1)This dolomite is generally medium-coarse in crystal size,and often associated with very finely to finely crystalline dolomite and cave-filling dolomite.(2)Typical identification marks of eogenetic karstification are developed at the top of the upward-shallowing sequence.(3)The medium-coarse crystalline sucrosic dolomite is cut by the early diagenetic karst fabric,and is characterized by dolomite with dissolution edge,dolomite vadose silt in pores,and transgression clay filling between the medium-coarse dolomite crystals.The medium-coarse crystalline sucrosic dolomite was formed earlier than the eogenetic karstification.The sucrosic dolomite with occasional cloudy core and clear rim has bright cathodoluminescence,high inclusions temperature,significant negative skewness carbon and oxygen isotopic compositions,and rare-earth element(REE)pattern similar to seawater,indicating it experienced two periods of dolomitization,evaporative concentration reflux-infiltration and penecontemporaneous seawater circulation hydrothermal fluid dolomitization.The study results not only update the understanding on the dolomitization time of Qixia Formation,demonstrate that the sucrosic dolomite can be formed in the penecontemporaneous stage when seawater reflux superimposed with hydrothermal fluid effects,but also show that the taphorogenesis in the Dongwu period began in the Early Permian.Moreover,the dolomite controlled by the grain bank migration and terrain in the slope break appears in bands of large scale,this knowledge provides basis for expanding the exploration field of this type of reservoirs.
基金supported by the National Major Science of China (Grant NO. 2011ZX05030-003-002)Natural Science key project of Education Department in Sichuan (NO.13ZA0058)
文摘Karst rocks from the Huanglong Formation exposed at the margin of the Eastern Sichuan Basin can be divided into four types:slightly corroded, moderately corroded porous, intensely corroded brecciated and intensely corroded and replaced secondary calcic karstic rocks. The carbon, oxygen and strontium isotope compositions of the various karst rocks are analyzed systematically and compared to rocks without karst corrosion. The results indicate that(1) the Huanglong Formation in the eastern Sichuan Basin was a restricted bay supplied and controlled by freshwater in which mudmicrite and mud-dolomicrite exhibit low δ13C and δ18O values and high 87Sr/86 Sr ratios;(2) all types of karstic rocks in the paleokarst reservoirs of the Huanglong Formation in the research area are affected by atmospheric freshwater with the δ13C and δ18O values and 87Sr/86 Sr ratios in the original formation approaching those of atmospheric freshwater, which reflects ancient hydrological conditions, fluid properties, isotopic source and the fractionation effect;(3) the intensely corroded and replaced secondary limestone is affected by a variety of diagenetic fluids, often reflected by δ13C and δ18O values, while the 87Sr/86 Sr ratios exhibit the strong degree of the corrosion;(4) after comparing the 87Sr/86 Sr ratios of each type of karst rock, the diagenetic fluids are determined to be mainly atmospheric freshwater, and depending on the strength of corrosion, and the low 87Sr/86 Sr ratio fluids in the layer will participate in the karst process. The carbon, oxygen, and strontium isotopes of different karstic reservoirs can provide meaningful geochemical information for forecasting and evaluating the development and distribution rules of the Huanglong Formation at the margin of the eastern Sichuan Basin in time and space.
基金This study was supported by the project ofthe Science and Technology Innovation Fund of Command Center of Natural Resources Intergrated Survey entitled“Temporal and spatial distribution of paleochannel and origin of organic carbon burial in the Western Bohai Sea since 2.28Ma”(KC20220011)the project entitled“Characterization of Carboniferous-Early Permian heterogeneous porous carbonate reservoirs and hydrocarbon potential analysis in the central uplift of the South Yellow Sea Basin”(KLSG2304)+3 种基金by the Key laboratory of Submarine Science,Ministry of Natural Resources,the project entitled“1∶50000 Marine regional Geological survey in Caofeidian Sea Area,Bohai Sea”(ZD20220602)“1∶250000 Marine regional Geological survey in Weihai Sea Area,North Yellow Sea”(DD20230412)“Geological survey on tectonic and sedimentary conditions of Laoshan uplift”(DD2016015)by the China Geological Survey,and the project entitled“Study on Hydrocarbon Accumulation Failure and Fluid Evolution Reduction of the Permian Reservoir in the Laoshan Uplift,South Yellow Sea”(42076220)organized by the National Natural Science Foundation of China.
文摘Mesozoic-Palaeozoic marine carbonate rocks are crucial hydrocarbon reservoirs in the Central Uplift area of the South Yellow Sea Basin(SYSB).Due to the scarcity of boreholes and the significant heterogeneity of carbonate reservoirs,the distribution of porous carbonate reservoirs and their related key controlling factors remain unclear.In this study,factors affecting the distribution of porous Carboniferous-Early Permian carbonate reservoirs in the SYSB were investigated through seismic inversion and isotope analysis.The log-seismic characteristics of porous carbonate reservoirs,sensitive lithology parameters,and physical property parameters were extracted and analyzed.The pre-stack simultaneous inversion technique was applied to predict the lithology and physical properties of porous carbonate reservoirs.Moreover,the sedimentary of carbonate was analyzed using isotopes of carbon,oxygen,and strontium.The results show that porous carbonate reservoirs are mainly developed in the open platform sediments with porosities of 3%-5%and are mainly distributed in the paleo-highland(Huanglong Formation and Chuanshan Formation)and the slope of paleo-highland(Hezhou Formation).The porous carbonate reservoirs of the Qixia Formation are only locally developed.In addition,the negativeδ13C excursions indicate a warm and humid tropical climate with three sea-level fluctuations in the study area from the Carboniferous to Early Permian.The favorable conditions for developing porous carbonate rocks include the sedimentary environment and diagenetic process.The primary pore tends to form in high-energy environments of the paleo-highland,and the secondary pore is increased by dissolution during the syngenetic or quasi-syngenetic period.According to the hydrocarbon potential analysis,the Late Ordovician Wufeng Formation and Lower Silurian Gaojiabian Formation are the source rocks in the high-maturity-over-maturity stage,the Carboniferous-Lower Permian carbonate is the good reservoirs,and the Late Permian Longtan-Dalong Formation is the stable seal,ensuring a huge hydrocarbon accumulation potential in SYSB.The methods proposed in this study can be applied to other carbonate-dominated strata worldwide.
文摘近年来,合川地区栖霞组-茅口组钻获多口高产工业气流井,表明其具有良好的勘探前景。然而该地区整体勘探程度较低,储层特征及成因仍不明确,导致储层评价、预测难。基于潼深4井、合深6井等8口钻井的资料,开展岩芯、薄片、成像测井及孔渗数据的储层特征分析,并优选样品开展基于氩离子抛光扫描电镜(scanning electron microscopy,SEM)及工业计算机断层扫描(computed tomography,CT)的储层孔喉结构微观表征。结果表明:四川盆地合川地区栖霞组-茅口组主要发育晶粒白云岩、含灰白云岩和灰质云岩,晶粒白云岩为主要的储层岩性,也是主要的储集空间载体。栖霞组白云岩储层以相对均匀发育的基质孔为主,整体具有中高孔、中渗的特征;茅口组白云岩储层主要以非均质分布的溶蚀孔洞和溶缝为主,也存在一定量的基质孔,整体具有中高孔、中高渗特征。基于工业CT的储层微观表征揭示栖霞组晶间(溶)孔分布相对均匀,而茅口组白云岩则非均质性强,晶间(溶)孔分布与裂缝无关,反映这些孔隙为早期孔隙的继承;基于扫描电镜的储层微观表征揭示栖霞组-茅口组都存在与晶体缺陷相关的微孔隙,表明除溶蚀孔洞外,晶间(溶)孔与微孔隙对储层物性同样具有重要贡献。研究成果对合川地区栖霞组-茅口组白云岩储层评价提供了一定的科学依据。