“双碳规划”下电网面临形态和功能的集约升级,区域内节点化、模块化特征愈加突出,亟需研究一种计及节点特性的路由算法,来保障通信网支撑能力。首先,依托节点的电网影响度和拓扑关系定义了重要度参数。其次,从状态转移、自适应搜索收...“双碳规划”下电网面临形态和功能的集约升级,区域内节点化、模块化特征愈加突出,亟需研究一种计及节点特性的路由算法,来保障通信网支撑能力。首先,依托节点的电网影响度和拓扑关系定义了重要度参数。其次,从状态转移、自适应搜索收敛控制等方面将重要度嵌入策略模型,引导路由优化方向。然后,引进参数知识模型挖掘优化问题的相关知识,协同重要度指导后续优化过程,降低了蚁群系统的参数敏感性。最后,通过仿真证明在满足服务质量(quality of service,QoS)前提下,策略模型计及节点重要度的知识型路由能快速收敛,并提供了良好而稳定的主备用路由性能。展开更多
A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count ...A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.展开更多
网络技术的发展和多接入边缘计算的兴起使得计算和网络资源的部署逐渐靠近终端.随着服务数量的增多,为了向用户更好地推荐服务,如何在复杂、动态的边缘计算环境中实时、准确地预测服务质量(quality of service,QoS)成为一项挑战.本文提...网络技术的发展和多接入边缘计算的兴起使得计算和网络资源的部署逐渐靠近终端.随着服务数量的增多,为了向用户更好地推荐服务,如何在复杂、动态的边缘计算环境中实时、准确地预测服务质量(quality of service,QoS)成为一项挑战.本文提出一种基于服务负载实时预测QoS的深度神经模型(QPSL),它可以为边缘计算中的QoS预测提供缺少的负载状况感知和周期感知.首先,对服务的负载状况进行特征表示,并通过时序分解模块获取时序特征.其次,将CNN和BiLSTM结合,学习潜在的时序关系,生成不同时刻的状态向量.然后,基于Attention机制为历史时刻的状态向量分配权重,从而构造未来时刻的状态向量.最后,将上下文嵌入向量与状态向量送入感知层完成实时QoS预测.基于真实的融合数据集进行了大量的实验,结果表明QPSL在响应时间和吞吐量任务上的MAE分别平均提升了10.28%和10.87%,优于现有的时间感知QoS预测方法.展开更多
文摘“双碳规划”下电网面临形态和功能的集约升级,区域内节点化、模块化特征愈加突出,亟需研究一种计及节点特性的路由算法,来保障通信网支撑能力。首先,依托节点的电网影响度和拓扑关系定义了重要度参数。其次,从状态转移、自适应搜索收敛控制等方面将重要度嵌入策略模型,引导路由优化方向。然后,引进参数知识模型挖掘优化问题的相关知识,协同重要度指导后续优化过程,降低了蚁群系统的参数敏感性。最后,通过仿真证明在满足服务质量(quality of service,QoS)前提下,策略模型计及节点重要度的知识型路由能快速收敛,并提供了良好而稳定的主备用路由性能。
文摘A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.
文摘网络技术的发展和多接入边缘计算的兴起使得计算和网络资源的部署逐渐靠近终端.随着服务数量的增多,为了向用户更好地推荐服务,如何在复杂、动态的边缘计算环境中实时、准确地预测服务质量(quality of service,QoS)成为一项挑战.本文提出一种基于服务负载实时预测QoS的深度神经模型(QPSL),它可以为边缘计算中的QoS预测提供缺少的负载状况感知和周期感知.首先,对服务的负载状况进行特征表示,并通过时序分解模块获取时序特征.其次,将CNN和BiLSTM结合,学习潜在的时序关系,生成不同时刻的状态向量.然后,基于Attention机制为历史时刻的状态向量分配权重,从而构造未来时刻的状态向量.最后,将上下文嵌入向量与状态向量送入感知层完成实时QoS预测.基于真实的融合数据集进行了大量的实验,结果表明QPSL在响应时间和吞吐量任务上的MAE分别平均提升了10.28%和10.87%,优于现有的时间感知QoS预测方法.