To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critic...To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.展开更多
In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3...In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.展开更多
In a previous paper, we have proved that a planar quadratic system with invariant parabola r has at most one limit cycle. In this paper, we use geometric characteristics to give necessary and sufficient conditions un&...In a previous paper, we have proved that a planar quadratic system with invariant parabola r has at most one limit cycle. In this paper, we use geometric characteristics to give necessary and sufficient conditions un'der which a PQSp with three non-degenerate singular points can be transformed into twO different definite forms. In this wayl we obtain all the bifurcations of such a system.展开更多
Based on the linear quantum transformation theory,we present a new approach to obtain the explicit expressions of energy spectrum and simplify the derivations of partition functions for general multi-mode boson and fe...Based on the linear quantum transformation theory,we present a new approach to obtain the explicit expressions of energy spectrum and simplify the derivations of partition functions for general multi-mode boson and fermion quadratic systems.展开更多
This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The...This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.展开更多
This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
We theoretically study the effect of the quadratic coupling strength on optomechanical systems subjected to a continuous external force. Quadratic coupling strength originates from strong coupling between the optical ...We theoretically study the effect of the quadratic coupling strength on optomechanical systems subjected to a continuous external force. Quadratic coupling strength originates from strong coupling between the optical and the mechanical degrees of freedom. We show that the quadratic coupling strength reduces the amplitude of the dispersion spectra at the resonance in both blue-and red-sideband regimes. However, it increases(decreases) the amplitude of the absorption spectrum in the blue-(red-)sideband regime. Furthermore, in both sideband regimes, the effective detuning between the pump and the cavity deviates with the quadratic coupling strength. Thereby, appropriate selection of the quadratic coupling strength results in an important magnification(in absolute value) of the group delay for both slow and fast light exiting from the optomechanical cavity.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communic...In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.展开更多
The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software w...The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.展开更多
Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of...Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.展开更多
The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first ...The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.展开更多
Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equa...Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is w...Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is why our objective is to exploit this energy potential in order to produce and use sufficient energy. To achieve this, we are carrying out a series of studies aimed at developing a device capable of converting solar photovoltaic energy into electrical energy. This device is a two-stage converter, the first of which is a quadratic boost and the second a full bridge. Initially, this paper is devoted to studying the performance of the quadratic boost.展开更多
The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the effic...The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the efficiency are extracted. These two quantities are plotted as a function of the duty cycle in order to appreciate them in different operating points of the transistor. The values of the different components have also been extracted for the fabrication of a prototype of the converter. Thanks to a set of experimental measurements at the input as well as at the output of the prototype converter, the voltage gain and the efficiency could also be observed. These were also plotted for different loads to observe converter behavior. The theoretical curves were compared with the experimental curves which allowed to validate the proposed mathematical models on a large range of duty cycles.展开更多
This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadr...This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.展开更多
We transform the quadratic system into the special system of Type (Ⅲ)a=0' and hence a string sufficient conditions are established to ensure that the considered system has at most one limit cycle.
The main results of this paper are as follows: (ⅰ) The important formulas, given by Bautin, of three focal quantities for the specific form of quadratle system (E2) have been generalized to the general form of ...The main results of this paper are as follows: (ⅰ) The important formulas, given by Bautin, of three focal quantities for the specific form of quadratle system (E2) have been generalized to the general form of (E2). (ⅱ) By using the method in [13], a kind of (E2) possessing at least four limit cycles is given. Theorem 2 herein contains the results in [11--13] on (1,3)-distribution of limit cycles of (E2).展开更多
In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center regi...In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center region quadratic system perturbed by quadratic polynomial perturbation may generate three limit cycles.展开更多
基金Project supported by the National Natural Science Foundation of China (10471066).
文摘To continue the discussion in (Ⅰ ) and ( Ⅱ ),and finish the study of the limit cycle problem for quadratic system ( Ⅲ )m=0 in this paper. Since there is at most one limit cycle that may be created from critical point O by Hopf bifurcation,the number of limit cycles depends on the different situations of separatrix cycle to be formed around O. If it is a homoclinic cycle passing through saddle S1 on 1 +ax-y = 0,which has the same stability with the limit cycle created by Hopf bifurcation,then the uniqueness of limit cycles in such cases can be proved. If it is a homoclinic cycle passing through saddle N on x= 0,which has the different stability from the limit cycle created by Hopf bifurcation,then it will be a case of two limit cycles. For the case when the separatrix cycle is a heteroclinic cycle passing through two saddles at infinity,the discussion of the paper shows that the number of limit cycles will change from one to two depending on the different values of parameters of system.
文摘In this paper, (a) we rerise Theorem 2 of Ref [1] omit the condition V_7>0 .(b) we discuss the relative positions of six curves M(s ̄2, r)=0, J( s ̄2, r)=0, L(s ̄2,r)=0, T(s ̄2,r)=0, Under the condition of the (1.3) distri-butions of limit cycles, we expand the variable regions of parameters ( s , r) and clearly. show them in figure, (c) we study the (1, 3) distributions of limit cycles of one kind quadratic systems with two singular points at the infinite: and (d) we give a generalmethod to discuss the ( 1 ,3) distibutions`of limit cycles of system (1.1) whatever there isone, two or three singular points at the infinite.
文摘In a previous paper, we have proved that a planar quadratic system with invariant parabola r has at most one limit cycle. In this paper, we use geometric characteristics to give necessary and sufficient conditions un'der which a PQSp with three non-degenerate singular points can be transformed into twO different definite forms. In this wayl we obtain all the bifurcations of such a system.
基金Supported by the National Natural Science Foundation of China under Grant No.19575044.
文摘Based on the linear quantum transformation theory,we present a new approach to obtain the explicit expressions of energy spectrum and simplify the derivations of partition functions for general multi-mode boson and fermion quadratic systems.
基金supported in part by the National Natural Science Foundation of China(61933007,U21A2019,U22A2044,61973102,62073180)the Natural Science Foundation of Shandong Province of China(ZR2021MF088)+1 种基金the Hainan Province Science and Technology Special Fund of China(ZDYF2022SHFZ105)the Royal Society of the UK,and the Alexander vonHumboldt Foundation of Germany。
文摘This paper focuses on the quadratic nonfragile filtering problem for linear non-Gaussian systems under multiplicative noises,multiple missing measurements as well as the dynamic event-triggered transmission scheme.The multiple missing measurements are characterized through random variables that obey some given probability distributions,and thresholds of the dynamic event-triggered scheme can be adjusted dynamically via an auxiliary variable.Our attention is concentrated on designing a dynamic event-triggered quadratic nonfragile filter in the well-known minimum-variance sense.To this end,the original system is first augmented by stacking its state/measurement vectors together with second-order Kronecker powers,thus the original design issue is reformulated as that of the augmented system.Subsequently,we analyze statistical properties of augmented noises as well as high-order moments of certain random parameters.With the aid of two well-defined matrix difference equations,we not only obtain upper bounds on filtering error covariances,but also minimize those bounds via carefully designing gain parameters.Finally,an example is presented to explain the effectiveness of this newly established quadratic filtering algorithm.
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘We theoretically study the effect of the quadratic coupling strength on optomechanical systems subjected to a continuous external force. Quadratic coupling strength originates from strong coupling between the optical and the mechanical degrees of freedom. We show that the quadratic coupling strength reduces the amplitude of the dispersion spectra at the resonance in both blue-and red-sideband regimes. However, it increases(decreases) the amplitude of the absorption spectrum in the blue-(red-)sideband regime. Furthermore, in both sideband regimes, the effective detuning between the pump and the cavity deviates with the quadratic coupling strength. Thereby, appropriate selection of the quadratic coupling strength results in an important magnification(in absolute value) of the group delay for both slow and fast light exiting from the optomechanical cavity.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFA0711301in part by the National Natural Science Foundation of China under Grant 62341110, Grant U22A2002, and Grant 62025110in part by the Suzhou Science and Technology Project
文摘In the areas without terrestrial communication infrastructures,unmanned aerial vehicles(UAVs)can be utilized to serve field robots for mission-critical tasks.For this purpose,UAVs can be equipped with sensing,communication,and computing modules to support various requirements of robots.In the task process,different modules assist the robots to perform tasks in a closed-loop way,which is referred to as a sensing-communication-computing-control(SC3)loop.In this work,we investigate a UAV-aided system containing multiple SC^(3)loops,which leverages non-orthogonal multiple access(NOMA)for efficient resource sharing.We describe and compare three different modelling levels for the SC^(3)loop.Based on the entropy SC^(3)loop model,a sum linear quadratic regulator(LQR)control cost minimization problem is formulated by optimizing the communication power.Further for the assure-to-be-stable case,we show that the original problem can be approximated by a modified user fairness problem,and accordingly gain more insights into the optimal solutions.Simulation results demonstrate the performance gain of using NOMA in such task-oriented systems,as well as the superiority of our proposed closed-loop-oriented design.
文摘The development of defect prediction plays a significant role in improving software quality. Such predictions are used to identify defective modules before the testing and to minimize the time and cost. The software with defects negatively impacts operational costs and finally affects customer satisfaction. Numerous approaches exist to predict software defects. However, the timely and accurate software bugs are the major challenging issues. To improve the timely and accurate software defect prediction, a novel technique called Nonparametric Statistical feature scaled QuAdratic regressive convolution Deep nEural Network (SQADEN) is introduced. The proposed SQADEN technique mainly includes two major processes namely metric or feature selection and classification. First, the SQADEN uses the nonparametric statistical Torgerson–Gower scaling technique for identifying the relevant software metrics by measuring the similarity using the dice coefficient. The feature selection process is used to minimize the time complexity of software fault prediction. With the selected metrics, software fault perdition with the help of the Quadratic Censored regressive convolution deep neural network-based classification. The deep learning classifier analyzes the training and testing samples using the contingency correlation coefficient. The softstep activation function is used to provide the final fault prediction results. To minimize the error, the Nelder–Mead method is applied to solve non-linear least-squares problems. Finally, accurate classification results with a minimum error are obtained at the output layer. Experimental evaluation is carried out with different quantitative metrics such as accuracy, precision, recall, F-measure, and time complexity. The analyzed results demonstrate the superior performance of our proposed SQADEN technique with maximum accuracy, sensitivity and specificity by 3%, 3%, 2% and 3% and minimum time and space by 13% and 15% when compared with the two state-of-the-art methods.
基金Supported by the National Natural Science Foundation of China(12001395)the special fund for Science and Technology Innovation Teams of Shanxi Province(202204051002018)+1 种基金Research Project Supported by Shanxi Scholarship Council of China(2022-169)Graduate Education Innovation Project of Taiyuan Normal University(SYYJSYC-2314)。
文摘Quadratic matrix equations arise in many elds of scienti c computing and engineering applications.In this paper,we consider a class of quadratic matrix equations.Under a certain condition,we rst prove the existence of minimal nonnegative solution for this quadratic matrix equation,and then propose some numerical methods for solving it.Convergence analysis and numerical examples are given to verify the theories and the numerical methods of this paper.
文摘The differential equations of continuum mechanics are the basis of an uncountable variety of phenomena and technological processes in fluid-dynamics and related fields.These equations contain derivatives of the first order with respect to time.The derivation of the equations of continuum mechanics uses the limit transitions of the tendency of the volume increment and the time increment to zero.Derivatives are used to derive the wave equation.The differential wave equation is second order in time.Therefore,increments of volume and increments of time in continuum mechanics should be considered as small but finite quantities for problems of wave formation.This is important for calculating the generation of sound waves and water hammer waves.Therefore,the Euler continuity equation with finite time increments is of interest.The finiteness of the time increment makes it possible to take into account the quadratic and cubic invariants of the strain rate tensor.This is a new branch in hydrodynamics.Quadratic and cubic invariants will be used in differential wave equations of the second and third order in time.
文摘Cornachia’s algorithm can be adapted to the case of the equation x2+dy2=nand even to the case of ax2+bxy+cy2=n. For the sake of completeness, we have given modalities without proofs (the proof in the case of the equation x2+y2=n). Starting from a quadratic form with two variables f(x,y)=ax2+bxy+cy2and n an integer. We have shown that a primitive positive solution (u,v)of the equation f(x,y)=nis admissible if it is obtained in the following way: we take α modulo n such that f(α,1)≡0modn, u is the first of the remainders of Euclid’s algorithm associated with n and α that is less than 4cn/| D |) (possibly α itself) and the equation f(x,y)=n. has an integer solution u in y. At the end of our work, it also appears that the Cornacchia algorithm is good for the form n=ax2+bxy+cy2if all the primitive positive integer solutions of the equation f(x,y)=nare admissible, i.e. computable by the algorithmic process.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
文摘Energy is the driving force behind all economic and industrial development. Africa is the least advanced continent in terms of energy consumption and production. Paradoxically, it is the sunniest continent, which is why our objective is to exploit this energy potential in order to produce and use sufficient energy. To achieve this, we are carrying out a series of studies aimed at developing a device capable of converting solar photovoltaic energy into electrical energy. This device is a two-stage converter, the first of which is a quadratic boost and the second a full bridge. Initially, this paper is devoted to studying the performance of the quadratic boost.
文摘The quadratic boost is studied under its real model. The equations, of the continuous conduction mode, descriptive of this model are established. From these equations, the expressions of the voltage gain and the efficiency are extracted. These two quantities are plotted as a function of the duty cycle in order to appreciate them in different operating points of the transistor. The values of the different components have also been extracted for the fabrication of a prototype of the converter. Thanks to a set of experimental measurements at the input as well as at the output of the prototype converter, the voltage gain and the efficiency could also be observed. These were also plotted for different loads to observe converter behavior. The theoretical curves were compared with the experimental curves which allowed to validate the proposed mathematical models on a large range of duty cycles.
文摘This study investigates the efficacy of the Mathematics Independent Learning Activity Practice and Play Unite Scheme(MILAPlus)as an instructional strategy to improve the proficiency levels of Grade 9 students in quadratic equations and functions through a study carried out at Quezon National High School.The research involved 116 Grade 9 students and utilized a quantitative approach,incorporating both pre-assessment and post-assessment measures.The research utilizes a quasi-experimental design,examining the academic performance of students before and after the introduction of MILAPlus.The pre-assessment establishes a baseline,and the subsequent post-assessment measures the impact of the instructional strategy.Statistical analyses,including t-tests,assess the significance of differences in mean scores and mean percentage scores,providing quantitative insights into the effectiveness of MILAPlus.Findings from the study revealed a statistically significant improvement in both mean scores and mean percentage scores after the utilization of MILAPlus,indicating enhanced proficiency in quadratic equations and functions.The Mean Proficiency Scores(MPS)also showed a substantial increase,demonstrating a marked improvement in overall proficiency levels among Grade 9 students.In light of the results,recommendations were given including the continued utilization of MILAPlus as an instructional strategy and aligning its development with prescribed learning competencies.Emphasizing the consistent adherence to policies and guidelines for MILAPlus implementation is suggested for sustaining positive effects on students’long-term performance in mathematics.This research contributes valuable insights into the practical application and effectiveness of MILAPlus within the context of Grade 9 mathematics education at Quezon National High School.
文摘We transform the quadratic system into the special system of Type (Ⅲ)a=0' and hence a string sufficient conditions are established to ensure that the considered system has at most one limit cycle.
文摘The main results of this paper are as follows: (ⅰ) The important formulas, given by Bautin, of three focal quantities for the specific form of quadratle system (E2) have been generalized to the general form of (E2). (ⅱ) By using the method in [13], a kind of (E2) possessing at least four limit cycles is given. Theorem 2 herein contains the results in [11--13] on (1,3)-distribution of limit cycles of (E2).
基金Supported by NSF and RFDP of China and China Postdoctoral Science Foundation (No.10471014).
文摘In this paper, we discuss the Poincaré bifurcation for a class of quadratic systems with an unbounded triangular region and a center region. It is proved, by Poincaré bifurcation, that inside the center region quadratic system perturbed by quadratic polynomial perturbation may generate three limit cycles.