This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uni...This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Str...In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.展开更多
This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is p...This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.展开更多
The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first ref...The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.展开更多
We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as se...We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.展开更多
Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by exp...Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods,it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.展开更多
Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a noncon...Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.展开更多
In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ell...In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.展开更多
This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of ...This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.展开更多
文摘This paper presents an approach that directly utilizes the Hessian matrix to investigate the existence and uniqueness of global solutions for the ECQP problem. The novel features of this proposed algorithm are its uniqueness and faster rate of convergence to the solution. The merit of this algorithm is base on cost, accuracy and number of operations.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
基金Supported by the fundamental research funds for the central universities under grant YWF-10-02-021 and by National Natural Science Foundation of China under grant 11001006 The author is very grateful to all the three anonymous referees for their constructive criticisms and useful suggestions that help to improve the paper.
文摘In this paper we study a Class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.
文摘This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.
文摘The box-constrained weighted maximin dispersion problem is to find a point in an n-dimensional box such that the minimum of the weighted Euclidean distance from given m points is maximized. In this paper, we first reformulate the maximin dispersion problem as a non-convex quadratically constrained quadratic programming (QCQP) problem. We adopt the successive convex approximation (SCA) algorithm to solve the problem. Numerical results show that the proposed algorithm is efficient.
基金supported by National Natural Science Foundation of China(Grant Nos. 11001006 and 91130019/A011702)the Fund of State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2011ZX-15.)
文摘We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C.(difference between convex) optimization approach,which can be reformulated as semidefinite programming problems.As an application,we propose new valid linear constraints for rank-one relaxation.
基金supported by the National Natural Science Foundation of China(Grant Nos.10171104,10571171&40233029).
文摘Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods,it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.
基金supported by US Army Research Office Grant(No.W911NF-04-D-0003)by the North Carolina State University Edward P.Fitts Fellowship and by National Natural Science Foundation of China(No.11171177)。
文摘Solving the quadratically constrained quadratic programming(QCQP)problem is in general NP-hard.Only a few subclasses of the QCQP problem are known to be polynomial-time solvable.Recently,the QCQP problem with a nonconvex quadratic objective function over one ball and two parallel linear constraints is proven to have an exact computable representation,which reformulates the original problem as a linear semidefinite program with additional linear and second-order cone constraints.In this paper,we provide exact computable representations for some more subclasses of the QCQP problem,in particular,the subclass with one secondorder cone constraint and two special linear constraints.
基金NsF of China (Grant No.60773185,10401038)Program for Beijing Excellent Talents and NSF of China (Grant No.10571134)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘In this paper, we discuss complex convex quadratically constrained optimization with uncertain data. Using S-Lemma, we show that the robust counterpart of complex convex quadratically constrained optimization with ellipsoidal or intersection-of-two-ellipsoids uncertainty set leads to a complex semidefinite program. By exploring the approximate S-Lemma, we give a complex semidefinite program which approximates the NP-hard robust counterpart of complex convex quadratic optimization with intersection-of-ellipsoids uncertainty set.
基金the National Natural Science Foundation of China(No.11101261).
文摘This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.