In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalit...In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.展开更多
By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential ...By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the giv...Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.展开更多
As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many o...As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.展开更多
A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solve...A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).展开更多
By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their metho...By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their method to be quadratically convergent under certain assumptions in 1993.In this paper a hybrid method for the variational inequality problem under the assumptions that the mapping F is continuously differentiable and its Jacobian matrix Δ F(x) is positive definite for all x∈S rather than strongly monotone and that the set S is nonempty,polyhedral,closed and convex is proposed.Armijo type line search and trust region strategies as well as Fukushima's differentiable merit function are incorporated into the method.It is then shown that the method is well defined and globally convergent and that,under the same assumptions as those of Taji et al.,the method reduces to the basic Newton method and hence the rate of convergence is quadratic.Computational experiences show the efficiency of the proposed method.展开更多
In this paper,the nonlinear complementarity problem is transformed into the least squares problem with nonnegative constraints,and a SQP algorithm for this reformulation based on a damped Gauss Newton type method is ...In this paper,the nonlinear complementarity problem is transformed into the least squares problem with nonnegative constraints,and a SQP algorithm for this reformulation based on a damped Gauss Newton type method is presented.It is shown that the algorithm is globally and locally superlinearly (quadratically) convergent without the assumption of monotonicity.展开更多
In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Bro...In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Brownian motion with Hurst parameter H∈(1/2,1)and subfractional Brownian motion with Hurst parameter H∈(1/2,1).As far as we know,this is the first result on stochastic Volterra equations in this topic.展开更多
It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we pr...It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.展开更多
Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lips...Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lipschitz continuous. The algorithm is equivalent to a trust region algorithm in some sense, and the global convergence result is given. The sequence generated by the algorithm converges to the solution quadratically, if ||F(x)||2 provides a local error bound for the system of nonlinear equations. Numerical results show that the algorithm performs well.展开更多
We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF...We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF–function). The proposed algorithm has to solve onlyone linear system of equations and performs only one line search per iteration. Without requiringany strict complementarity assumption at the P_0–NCP solution, we show that the proposed algorithmconverges globally and superlinearly under mild conditions. Furthermore, the algorithm has localquadratic convergence under suitable conditions. The main feature of our global convergence resultsis that we do not assume a priori the existence of an accumulation point. Compared to the previousliteratures, our algorithm has stronger convergence results under weaker conditions.展开更多
In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neig...In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neighborhood degenerates into the central path, our algorithms also degenerate into path-following algorithms. We prove that our algorithms maintain the O9√nL) -iteration complexity still, while the classical wide neighborhood primal-dual interior point algorithms have only the O(nL-iteration complexity. We also proved that the algorithms are quadratic convergence if the optimal vertex is nondegenerate. Finally, we show some computational results of our algorithms.展开更多
Presents a study which proposed to introduce a trust region-type modification of Newton method for the monotone inequality problem using merit function. Concepts of monotone mapping; Proof of convergence of algorithm ...Presents a study which proposed to introduce a trust region-type modification of Newton method for the monotone inequality problem using merit function. Concepts of monotone mapping; Proof of convergence of algorithm variational inequality trust region; Results.展开更多
This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new...This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.展开更多
In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (...In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1], the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1′ is obtained under the assumption of nonsingularity of generalized Jacobian of φ(x, y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The effciency of the two methods is tested by numerical experiments.展开更多
For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of...For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of symmetric tensors.One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance.The other one is that a projection scheme is used to ensure the feasibility of all iteratives.Global convergence and local quadratic convergence of our algorithm are established,respectively.The preliminary numerical results show the efficiency of the proposed algorithm.展开更多
In this paper, we propose a general path following method, in which the starting point can be any feasible interior pair and each iteration uses a step with the largest possible reduction in duality gap. The algorithm...In this paper, we propose a general path following method, in which the starting point can be any feasible interior pair and each iteration uses a step with the largest possible reduction in duality gap. The algorithm maintains the O (nL) ineration complexity It enjoys quadratic convergence if the optimal vertex is nondegenerate.展开更多
Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented...Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented; Vectors for each updating step in the algorithm proposed; Establishment of the convergence properties of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金supported by Guangdong Provincial Zhujiang Scholar Award Project,National Science Foundation of China(10671163,10871031)the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department(06A069,06C824)
文摘In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.
文摘By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金Supported by the National Natural Science Foundation of China(No.51205286)
文摘Based on a smoothing symmetric disturbance FB-function,a smoothing inexact Newton method for solving the nonlinear complementarity problem with P0-function was proposed.It was proved that under mild conditions,the given algorithm performed global and superlinear convergence without strict complementarity.For the same linear complementarity problem(LCP),the algorithm needs similar iteration times to the literature.However,its accuracy is improved by at least 4 orders with calculation time reduced by almost 50%,and the iterative number is insensitive to the size of the LCP.Moreover,fewer iterations and shorter time are required for solving the problem by using inexact Newton methods for different initial points.
基金Supported by National Natural Science Foundation of China (No.10871144)the Seed Foundation of Tianjin University (No.60302023)
文摘As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.
文摘A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).
基金Project supported by the National Natural Science Foundation of China (1 9971 0 65)
文摘By using Fukushima's differentiable merit function,Taji,Fukushima and Ibaraki have given a globally convergent modified Newton method for the strongly monotone variational inequality problem and proved their method to be quadratically convergent under certain assumptions in 1993.In this paper a hybrid method for the variational inequality problem under the assumptions that the mapping F is continuously differentiable and its Jacobian matrix Δ F(x) is positive definite for all x∈S rather than strongly monotone and that the set S is nonempty,polyhedral,closed and convex is proposed.Armijo type line search and trust region strategies as well as Fukushima's differentiable merit function are incorporated into the method.It is then shown that the method is well defined and globally convergent and that,under the same assumptions as those of Taji et al.,the method reduces to the basic Newton method and hence the rate of convergence is quadratic.Computational experiences show the efficiency of the proposed method.
基金Supported by the National Natural Science Foundation of China(1 9971 0 0 2 )
文摘In this paper,the nonlinear complementarity problem is transformed into the least squares problem with nonnegative constraints,and a SQP algorithm for this reformulation based on a damped Gauss Newton type method is presented.It is shown that the algorithm is globally and locally superlinearly (quadratically) convergent without the assumption of monotonicity.
基金support provided by the Key Scientific Research Project Plans of Henan Province Advanced Universities(No.24A110006)the NSFs of China(Grant Nos.11971154,12361030)by the Science and Technology Foundation of Jiangxi Education Department(Grant No.GJJ190265)。
文摘In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Brownian motion with Hurst parameter H∈(1/2,1)and subfractional Brownian motion with Hurst parameter H∈(1/2,1).As far as we know,this is the first result on stochastic Volterra equations in this topic.
基金supported by the National Natural Science Foundation of China (Grants No.10571134 and 10871144)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.
文摘Based on the work of paper [1], we propose a modified Levenberg-Marquardt algoithm for solving singular system of nonlinear equations F(x) = 0, where F(x) : Rn - Rn is continuously differentiable and F'(x) is Lipschitz continuous. The algorithm is equivalent to a trust region algorithm in some sense, and the global convergence result is given. The sequence generated by the algorithm converges to the solution quadratically, if ||F(x)||2 provides a local error bound for the system of nonlinear equations. Numerical results show that the algorithm performs well.
基金This work is partly supported by the National Natural Science Foundation of China(Grant,Nos.10271002,10201001)
文摘We propose a one–step smoothing Newton method for solving the non-linearcomplementarity problem with P 0–function (P_0–NCP) based on the smoothing symmetric perturbedFisher function (for short, denoted as the SSPF–function). The proposed algorithm has to solve onlyone linear system of equations and performs only one line search per iteration. Without requiringany strict complementarity assumption at the P_0–NCP solution, we show that the proposed algorithmconverges globally and superlinearly under mild conditions. Furthermore, the algorithm has localquadratic convergence under suitable conditions. The main feature of our global convergence resultsis that we do not assume a priori the existence of an accumulation point. Compared to the previousliteratures, our algorithm has stronger convergence results under weaker conditions.
基金This work is partially supported by the National Natural Science Foundation of China(Grant No.19731010)the Knowledge Innovation Program of the Chinese Academy of Sciences.
文摘In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neighborhood degenerates into the central path, our algorithms also degenerate into path-following algorithms. We prove that our algorithms maintain the O9√nL) -iteration complexity still, while the classical wide neighborhood primal-dual interior point algorithms have only the O(nL-iteration complexity. We also proved that the algorithms are quadratic convergence if the optimal vertex is nondegenerate. Finally, we show some computational results of our algorithms.
文摘Presents a study which proposed to introduce a trust region-type modification of Newton method for the monotone inequality problem using merit function. Concepts of monotone mapping; Proof of convergence of algorithm variational inequality trust region; Results.
基金the Scientific Research Foundation of Hunan Provincial Education Department, No. 02B021, and the National Natural Science Foundation of China, No. 10171008.
文摘This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.
文摘In this paper, we analyze the global and local convergence properties of two predictor-corrector smoothing methods, which are based on the framework of the method in [1], for monotone linear complementarity problems (LCPs). The difference between the algorithm in [1] and our algorithms is that the neighborhood of smoothing central path in our paper is different to that in [1]. In addition, the difference between Algorithm 2.1 and the algorithm in [1] exists in the calculation of the predictor step. Comparing with the results in [1], the global and local convergence of the two methods can be obtained under very mild conditions. The global convergence of the two methods do not need the boundness of the inverse of the Jacobian. The superlinear convergence of Algorithm 2.1′ is obtained under the assumption of nonsingularity of generalized Jacobian of φ(x, y) at the limit point and Algorithm 2.1 obtains superlinear convergence under the assumption of strict complementarity at the solution. The effciency of the two methods is tested by numerical experiments.
基金supported in part by the NNSF of China(11171003)the Innovation Talent Training Program of Science and Technology of Jilin Province of China(20180519011JH)+2 种基金the Science and Technology Development Project Program of Jilin Province(20190303132SF)The research of Mingyuan Cao is partially supported by the Project of Education Department of Jilin Province(JJKH20200028KJ)The research of Qingdao Huang is partially supported by the NNSF of China(11171131).
文摘For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of symmetric tensors.One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance.The other one is that a projection scheme is used to ensure the feasibility of all iteratives.Global convergence and local quadratic convergence of our algorithm are established,respectively.The preliminary numerical results show the efficiency of the proposed algorithm.
文摘In this paper, we propose a general path following method, in which the starting point can be any feasible interior pair and each iteration uses a step with the largest possible reduction in duality gap. The algorithm maintains the O (nL) ineration complexity It enjoys quadratic convergence if the optimal vertex is nondegenerate.
基金Research partially supported by the Faculty Research Grant RIG-35547 and ROG-34628 of the University of North Texas and in part by the Cornell Theory Center which receives major funding from the National Science Foundation and IBM Corporation with ad
文摘Presents information on a study which analyzed an interior trust-region-based algorithm for linearly constrained minimization problems. Optimality conditions for the linearly constrained minimization problem presented; Vectors for each updating step in the algorithm proposed; Establishment of the convergence properties of the proposed algorithm.