期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quality-Aware User Recruitment Based on Federated Learning in Mobile Crowd Sensing 被引量:5
1
作者 Wei Zhang Zhuo Li Xin Chen 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第6期869-877,共9页
With the rapid development of mobile devices,the use of Mobile Crowd Sensing(MCS)mode has become popular to complete more intelligent and complex sensing tasks.However,large-scale data collection may reduce the qualit... With the rapid development of mobile devices,the use of Mobile Crowd Sensing(MCS)mode has become popular to complete more intelligent and complex sensing tasks.However,large-scale data collection may reduce the quality of sensed data.Thus,quality control is a key problem in MCS.With the emergence of the federated learning framework,the number of complex intelligent calculations that can be completed on mobile devices has increased.In this study,we formulate a quality-aware user recruitment problem as an optimization problem.We predict the quality of sensed data from different users by analyzing the correlation between data and context information through federated learning.Furthermore,the lightweight neural network model located on mobile terminals is used.Based on the prediction of sensed quality,we develop a user recruitment algorithm that runs on the cloud platform through terminal-cloud collaboration.The performance of the proposed method is evaluated through simulations.Results show that compared with existing algorithms,i.e.,Random Adaptive Greedy algorithm for User Recruitment(RAGUR)and Context-Aware Tasks Allocation(CATA),the proposed method improves the quality of sensed data by 23.5%and 38.8%,respectively. 展开更多
关键词 crowd sensing federated learning quality aware user recruitment
原文传递
A Quality-aware Incremental LMS Algorithm for Distributed Adaptive Estimation
2
作者 Wael M.Bazzi Amir Rastegarnia Azam Khalili 《International Journal of Automation and computing》 EI CSCD 2014年第6期676-682,共7页
In this paper, we consider the problem of unknown parameter estimation using a set of nodes that are deployed over an area. The recently proposed distributed adaptive estimation algorithms(also known as adaptive netwo... In this paper, we consider the problem of unknown parameter estimation using a set of nodes that are deployed over an area. The recently proposed distributed adaptive estimation algorithms(also known as adaptive networks) are appealing solutions to the mentioned problem when the statistical information of the underlying process is not available or it varies over time. In this paper, our goal is to develop a new incremental least-mean square(LMS) adaptive network that considers the quality of measurements collected by the nodes. Thus, we use an adaptive combination strategy which assigns each node a step size according to its quality of measurement. The adaptive combination strategy improves the robustness of the proposed algorithm to the spatial variations of signal-to-noise ratio(SNR). The performance of our algorithm is more remarkable in inhomogeneous environments when there are some nodes with low SNRs in the network. The simulation results indicate the efficiency of the proposed algorithm. 展开更多
关键词 Adaptive networks distributed estimation least mean-square (LMS) incremental cooperation quality aware
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部