Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between ...Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between leech and host, the body transcriptomes of hunger and fed blood-sucking Poecilobdella javanica, Haemadipsa cavatuses, and Hirudo nipponia leeches were obtained by RNA sequencing, after comparison, a stratified unigenes group was obtained, which closely correlated to body distension. In the group, Rfamide receptor decreased significantly (P < 0.05) while serotonin receptor increased significantly (P < 0.05). Moreover, four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including cardiac muscle contraction, complement and coagulation cascades, renin-angiotensin system, and hypertrophic cardiomyopathy were significantly enriched. The unigenes annotation, neuroregulators correlation analysis and induced function of the KEGG pathways, were consistently supported the same result as: vasoconstriction and systole reaction enhance in hunger leeches and vice versa vasodilation and diastole increase in fed leeches, meanwhile, Interspecific comparison and correlative analyses of physiological function showed that the strongest reaction of induced heart failure from four KEGG occur in strongest reaction of systole in hungry P. javanica and in strongest reaction of diastole in fed H. nipponia. Overall, heart failure is likely a physiological function involved in feeding behaviour.展开更多
BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferati...BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferating potential in kidney injury in mice.METHODS Human umbilical cord blood(UCB)-derived CD34+cells were incubated for one week in vasculogenic conditioning medium.Vasculogenic culture significantly increased the number of CD34+cells and their ability to form endothelial progenitor cell colony-forming units.Adenineinduced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice,and cultured human UCB-CD34+cells were administered at a dose of 1×106/mouse on days 7,14,and 21 after the start of adenine diet.RESULTS Repetitive administration of cultured UCB-CD34+cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group.Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group(P<0.01).Microvasculature integrity was significantly preserved(P<0.01)and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group(P<0.001).CONCLUSION Early intervention using human cultured CD34+cells significantly improved the progression of tubulointerstitial kidney injury.Repetitive administration of cultured human UCB-CD34+cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects.展开更多
文摘Medicinal leeches have been utilized in therapy for thousands of years. However, the adaptation physiology between leeches and hosts is not fully understand. To disclose the molecular mechanisms of adaptation between leech and host, the body transcriptomes of hunger and fed blood-sucking Poecilobdella javanica, Haemadipsa cavatuses, and Hirudo nipponia leeches were obtained by RNA sequencing, after comparison, a stratified unigenes group was obtained, which closely correlated to body distension. In the group, Rfamide receptor decreased significantly (P < 0.05) while serotonin receptor increased significantly (P < 0.05). Moreover, four KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including cardiac muscle contraction, complement and coagulation cascades, renin-angiotensin system, and hypertrophic cardiomyopathy were significantly enriched. The unigenes annotation, neuroregulators correlation analysis and induced function of the KEGG pathways, were consistently supported the same result as: vasoconstriction and systole reaction enhance in hunger leeches and vice versa vasodilation and diastole increase in fed leeches, meanwhile, Interspecific comparison and correlative analyses of physiological function showed that the strongest reaction of induced heart failure from four KEGG occur in strongest reaction of systole in hungry P. javanica and in strongest reaction of diastole in fed H. nipponia. Overall, heart failure is likely a physiological function involved in feeding behaviour.
文摘BACKGROUND There is no established treatment to impede the progression or restore kidney function in human chronic kidney disease(CKD).AIM To examine the efficacy of cultured human CD34+cells with enhanced proliferating potential in kidney injury in mice.METHODS Human umbilical cord blood(UCB)-derived CD34+cells were incubated for one week in vasculogenic conditioning medium.Vasculogenic culture significantly increased the number of CD34+cells and their ability to form endothelial progenitor cell colony-forming units.Adenineinduced tubulointerstitial injury of the kidney was induced in immunodeficient non-obese diabetic/severe combined immunodeficiency mice,and cultured human UCB-CD34+cells were administered at a dose of 1×106/mouse on days 7,14,and 21 after the start of adenine diet.RESULTS Repetitive administration of cultured UCB-CD34+cells significantly improved the time-course of kidney dysfunction in the cell therapy group compared with that in the control group.Both interstitial fibrosis and tubular damage were significantly reduced in the cell therapy group compared with those in the control group(P<0.01).Microvasculature integrity was significantly preserved(P<0.01)and macrophage infiltration into kidney tissue was dramatically decreased in the cell therapy group compared with those in the control group(P<0.001).CONCLUSION Early intervention using human cultured CD34+cells significantly improved the progression of tubulointerstitial kidney injury.Repetitive administration of cultured human UCB-CD34+cells significantly improved tubulointerstitial damage in adenine-induced kidney injury in mice via vasculoprotective and anti-inflammatory effects.