When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada...When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.展开更多
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ...Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.展开更多
Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image ...Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.展开更多
In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal f...In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal for each actuator is quantized by sector-bounded quantizers,including the logarithmic quantizer and the hysteresis quantizer.By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal,the influence caused by input quantization and external disturbance is properly compensated for.Moreover,with the aid of the adaptive control technique,our approach can achieve attitude tracking without the explicit knowledge of inertial parameters.Unlike existing attitude control schemes for spacecraft,in this paper,the quantization parameters can be unknown,and the bounds of inertial parameters and disturbance are also not needed.In addition to proving the stability of the closed-loop system,the relationship between the control performance and design parameters is analyzed.Simulation results are presented to illustrate the effectiveness of the proposed scheme.展开更多
For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the prop...For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
In this paper,we suggest an adaptive watermarking method to improve both transparence and robustness of quantization index modulation(QIM) scheme. Instead of a fixed quantization step-size,we apply a step-size adapted...In this paper,we suggest an adaptive watermarking method to improve both transparence and robustness of quantization index modulation(QIM) scheme. Instead of a fixed quantization step-size,we apply a step-size adapted to image content in each 8×8 block to make a balance of robust extraction and transparent embedding.The modified step-size is determined by contrast masking thresholds of Watson’s perceptual model.From a normalized crossed-correlation value between the original watermark and the detected watermark,we could observe that our method is robust to attacks of additive white Gaussian noise(AWGN),Salt and Pepper noise and Joint Photographic Experts Group(JPEG) compression than the original QIM.By taking into account the contrast insensitivity and visible thresholds of human visual system,the suggested improvement achieves a maximum embedding strength and an appropriate quantization step-size which is consistent with local values of a host signal.展开更多
AVQ(Adaptive Vector Quantizer)overcomes some shortcomings of traditional vectorquantizer with a fixed codebook trained and generated by the LBG or other algorithms by applyinga variab|e codebook.In this paper,we descr...AVQ(Adaptive Vector Quantizer)overcomes some shortcomings of traditional vectorquantizer with a fixed codebook trained and generated by the LBG or other algorithms by applyinga variab|e codebook.In this paper,we describe an effective and efficient implementation of AVQby modifying the CCN(Carpenter/Grossberg Net).The encoding process of AVQ is very similarto the learning process of the CGN.We study several different encoding schemes,includingwaveform AVQ,analysed parameter AVQ and so on,implemented by the CGN.And we simulatethe encoding performance of each scheme for encoding Gaussian process source,first order Gauss-Markov process source and practical speech signal.Our simulation results show that good qualityboth in subjective and objective tests can be obtained in a low or middle bit rate range.展开更多
The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth...The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.展开更多
基金supported by the National Natural Science Foundation of China (62206204,62176193)the Natural Science Foundation of Hubei Province,China (2023AFB705)the Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0932)。
文摘When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
基金funded by the National Natural Science Foundation of China,grant number 61302188.
文摘Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.
文摘Medical image fusion has been developed as an efficient assistive technology in various clinical applications such as medical diagnosis and treatment planning.Aiming at the problem of insufficient protection of image contour and detail information by traditional image fusion methods,a new multimodal medical image fusion method is proposed.This method first uses non-subsampled shearlet transform to decompose the source image to obtain high and low frequency subband coefficients,then uses the latent low rank representation algorithm to fuse the low frequency subband coefficients,and applies the improved PAPCNN algorithm to fuse the high frequency subband coefficients.Finally,based on the automatic setting of parameters,the optimization method configuration of the time decay factorαe is carried out.The experimental results show that the proposed method solves the problems of difficult parameter setting and insufficient detail protection ability in traditional PCNN algorithm fusion images,and at the same time,it has achieved great improvement in visual quality and objective evaluation indicators.
文摘In this paper,an adaptive backstepping control scheme is proposed for attitude tracking of non-rigid spacecraft in the presence of input quantization,inertial uncertainty and external disturbance.TThe control signal for each actuator is quantized by sector-bounded quantizers,including the logarithmic quantizer and the hysteresis quantizer.By describing the impact of quantization in a new affine model and introducing a smooth function and a novel form of the control signal,the influence caused by input quantization and external disturbance is properly compensated for.Moreover,with the aid of the adaptive control technique,our approach can achieve attitude tracking without the explicit knowledge of inertial parameters.Unlike existing attitude control schemes for spacecraft,in this paper,the quantization parameters can be unknown,and the bounds of inertial parameters and disturbance are also not needed.In addition to proving the stability of the closed-loop system,the relationship between the control performance and design parameters is analyzed.Simulation results are presented to illustrate the effectiveness of the proposed scheme.
基金the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Science and Technology Project of Jilin Province(20210509053RQ)the Fourteenth Five Year Science Research Plan of Jilin Province(JJKH20220115KJ)。
文摘For a class of high-order nonlinear multi-agent systems with input hysteresis,an adaptive consensus output-feedback quantized control scheme with full state constraints is investigated.The major properties of the proposed control scheme are:1)According to the different hysteresis input characteristics of each agent in the multi-agent system,a hysteresis quantization inverse compensator is designed to eliminate the influence of hysteresis characteristics on the system while ensuring that the quantized signal maintains the desired value.2)A barrier Lyapunov function is introduced for the first time in the hysteretic multi-agent system.By constructing state constraint control strategy for the hysteretic multi-agent system,it ensures that all the states of the system are always maintained within a predetermined range.3)The designed adaptive consensus output-feedback quantization control scheme allows the hysteretic system to have unknown parameters and unknown disturbance,and ensures that the input signal transmitted between agents is the quantization value,and the introduced quantizer is implemented under the condition that only its sector bound property is required.The stability analysis has proved that all signals of the closed-loop are semi-globally uniformly bounded.The Star Sim hardware-in-the-loop simulation certificates the effectiveness of the proposed adaptive quantized control scheme.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
基金supports of China NNSF(Grant No.60472063. 60325310)GDNSF/GDCNLF(04020074/ CN200402)
文摘In this paper,we suggest an adaptive watermarking method to improve both transparence and robustness of quantization index modulation(QIM) scheme. Instead of a fixed quantization step-size,we apply a step-size adapted to image content in each 8×8 block to make a balance of robust extraction and transparent embedding.The modified step-size is determined by contrast masking thresholds of Watson’s perceptual model.From a normalized crossed-correlation value between the original watermark and the detected watermark,we could observe that our method is robust to attacks of additive white Gaussian noise(AWGN),Salt and Pepper noise and Joint Photographic Experts Group(JPEG) compression than the original QIM.By taking into account the contrast insensitivity and visible thresholds of human visual system,the suggested improvement achieves a maximum embedding strength and an appropriate quantization step-size which is consistent with local values of a host signal.
文摘AVQ(Adaptive Vector Quantizer)overcomes some shortcomings of traditional vectorquantizer with a fixed codebook trained and generated by the LBG or other algorithms by applyinga variab|e codebook.In this paper,we describe an effective and efficient implementation of AVQby modifying the CCN(Carpenter/Grossberg Net).The encoding process of AVQ is very similarto the learning process of the CGN.We study several different encoding schemes,includingwaveform AVQ,analysed parameter AVQ and so on,implemented by the CGN.And we simulatethe encoding performance of each scheme for encoding Gaussian process source,first order Gauss-Markov process source and practical speech signal.Our simulation results show that good qualityboth in subjective and objective tests can be obtained in a low or middle bit rate range.
文摘The high-efficiency video coder(HEVC)is one of the most advanced techniques used in growing real-time multimedia applications today.However,they require large bandwidth for transmission through bandwidth,and bandwidth varies with different video sequences/formats.This paper proposes an adaptive information-based variable quantization matrix(AIVQM)developed for different video formats having variable energy levels.The quantization method is adapted based on video sequence using statistical analysis,improving bit budget,quality and complexity reduction.Further,to have precise control over bit rate and quality,a multi-constraint prune algorithm is proposed in the second stage of the AI-VQM technique for pre-calculating K numbers of paths.The same should be handy to selfadapt and choose one of the K-path automatically in dynamically changing bandwidth availability as per requirement after extensive testing of the proposed algorithm in the multi-constraint environment for multiple paths and evaluating the performance based on peak signal to noise ratio(PSNR),bit-budget and time complexity for different videos a noticeable improvement in rate-distortion(RD)performance is achieved.Using the proposed AIVQM technique,more feasible and efficient video sequences are achieved with less loss in PSNR than the variable quantization method(VQM)algorithm with approximately a rise of 10%–20%based on different video sequences/formats.