The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected ...The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — ?and , it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.展开更多
This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum flu...This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.展开更多
The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x...The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x ≤ 0.66) system. It was found that the Neel temperature TNdecreases with increasing La content x, and reaches 0 K near a critical content xcr =0.6. A new phase diagram was constructed based on these measurements. A non-Fermi liquid behavior in ρ(T) and a log T relationship in C(T) were found in the samples near xcr, indicating them to be near an AFM quantum critical point(QCP) with strong spin fluctuation. Our finding indicates that(Ce(1-x)Lax)2Ir3Ge5 may be a new platform to search for unconventional superconductivity.展开更多
In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase tr...In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.展开更多
By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons ...By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.展开更多
We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection ...We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.展开更多
We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the princ...We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.展开更多
We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, duri...We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction.展开更多
It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin ...It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron–electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling(SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.展开更多
采用Stochastic Series Expansion(SSE)量子蒙特卡洛方法对正方晶格中自旋为1/2的反铁磁海森堡模型进行计算机模拟,给出能量、比热及均匀磁化率与温度的变化关系。结果表明:在各向同性情况下,温度约在kT/J=0.6处,比热有峰值,温度约在kT/...采用Stochastic Series Expansion(SSE)量子蒙特卡洛方法对正方晶格中自旋为1/2的反铁磁海森堡模型进行计算机模拟,给出能量、比热及均匀磁化率与温度的变化关系。结果表明:在各向同性情况下,温度约在kT/J=0.6处,比热有峰值,温度约在kT/J=1处,均匀磁化率达到饱和,且晶格大小的有限性对热力学量与温度的变化行为有一定的影响;在各向异性情况下,能量随着各向异性参数g的增加而减小,且在低温区,当g<1时,均匀磁化率随温度变化比较缓慢,当g>1时,均匀磁化率随温度降低向零指数衰减,在高温区,对不同各向异性参数g,均匀磁化率随温度变化行为趋于一致。展开更多
文摘The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — ?and , it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.
基金supported by the Natural Science Foundation of the Educational Department of Liaoning Province,China (Grant Nos20060638 and 2008533)
文摘This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.
基金supported by the National Basic Research Program of China(Grant Nos.2016FYA0300402,2015CB921004,and 2012CB821404)the National Natural Science Foundation of China(Grant Nos.11374261 and 11204059)
文摘The measurements on temperature dependences of magnetic susceptibility χ(T), specific heat C(T), and electrical resistivity ρ(T) were carried out for the antiferromagnetic(AFM)(Ce(1-x)Lax)2Ir3Ge5(0 ≤ x ≤ 0.66) system. It was found that the Neel temperature TNdecreases with increasing La content x, and reaches 0 K near a critical content xcr =0.6. A new phase diagram was constructed based on these measurements. A non-Fermi liquid behavior in ρ(T) and a log T relationship in C(T) were found in the samples near xcr, indicating them to be near an AFM quantum critical point(QCP) with strong spin fluctuation. Our finding indicates that(Ce(1-x)Lax)2Ir3Ge5 may be a new platform to search for unconventional superconductivity.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674392)the Ministry of Science and Technology of China,National Program on Key Research Project(Grant No.2016YFA0300504)the Research Funds of Remnin University of China(Grant No.18XNLG24).
文摘In quasi-one-dimensional(q1D) quantum antiferromagnets, the complicated interplay of intrachain and interchain exchange couplings may give rise to rich phenomena. Motivated by recent progress on field-induced phase transitions in the q1D antiferromagnetic(AFM) compound YbAlO3, we study the phase diagram of spin-1/2 Heisenberg chains with Ising anisotropic interchain couplings under a longitudinal magnetic field via large-scale quantum Monte Carlo simulations,and investigate the role of the spin anisotropy of the interchain coupling on the ground state of the system. We find that the Ising anisotropy of the interchain coupling can significantly enhance the longitudinal spin correlations and drive the system to an incommensurate AFM phase at intermediate magnetic fields, which is understood as a longitudinal spin density wave(LSDW). With increasing field, the ground state changes to a canted AFM order with transverse spin correlations. We further provide a global phase diagram showing how the competition between the LSDW and the canted AFM states is tuned by the Ising anisotropy of the interchain coupling.
基金Project supported by the Natural Science Foundation of Hunan Province, China (Grant No 03JJY6008).
文摘By use of the Hartree approximation and the method of multiple scales, we investigate quantum solitons and intrinsic localized modes in a one-dimensional antiferromagnetic chain. It is shown that there exist solitons of two different quantum frequency bands: i.e., magnetic optical solitons and acoustic solitons. At the boundary of the Brillouin zone, these solitons becornc quantum intrinsic localized modes: their quantum eigenfrequencics are below the bottom of the harmonic optical frequency band and above the top of the harmonic acoustic frequency band.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11734002 and 11775021)the National Science Foundation(Grant No.DMR-1710170)a Simons Investigator Award
文摘We discuss the concept of typicality of quantum states at quantum-critical points, using projector Monte Carlo simu- lations of an S ---- 1/2 bilayer Heisenberg antiferromagnet as an illustration. With the projection (imaginary) time t scaled as t= aLz, L being the system length and z the dynamic critical exponent (which takes the value z = 1 in the bilayer model studied here), a critical point can be identified which asymptotically flows to the correct location and universality class with increasing L, independently of the prefactor a and the initial state. Varying the proportionality factor a and the initial state only changes the cross-over behavior into the asymptotic large-L behavior. In some cases, choosing an optimal factor a may also lead to the vanishing of the leading finite-size corrections. The observation of typicality can be used to speed up simulations of quantum criticality, not only within the Monte Carlo approach but also with other numerical methods where imaginary-time evolution is employed, e.g., tensor network states, as it is not necessary to evolve fully to the ground state but only for sufficiently long times to reach the typicality regime.
文摘We propose a mechanism for perfect entanglement transport in anti-ferromagnetic (AFM) quantum spin chain systems with modulated exchange coupling and also for the modulation of on-site magnetic field. We use the principle of adiabatic quantum pumping process for entanglement transfer in the spin chain systems. We achieve the perfect entanglement transfer over an arbitrarily long distance and a better entanglement transport for longer AFM spin chain system than for the ferromagnetic one. We explain analytically and physically—why the entanglement hops in alternate sites. We find the condition for blocking of entanglement transport even in the perfect pumping situation. Our analytical solution interconnects quantum many body physics and quantum information science.
基金supported by the National Key Basic Research Program of China(Grant No.2011CB921702)the National Natural Science Foundation of China(Grant No.11104331)
文摘We perform both dc and ac magnetic measurements on the single crystal of Mn30(Et-sao)3(C104)(MeOH)3 single- molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction.
基金supported by the National Key Basic Research Program of China(Grant Nos.2014CB920903,2013CB921903,2011CBA00108,and 2012CB937500)the National Natural Science Foundation of China(Grant Nos.11021262,11172303,11404022,11225418,and 11174337)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20121101110046)the Excellent Young Scholars Research Fund of Beijing Institute of Technology(Grant No.2014CX04028)the Basic Research Funds of Beijing Institute of Technology(Grant No.20141842001)
文摘It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron–electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling(SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state.
文摘采用Stochastic Series Expansion(SSE)量子蒙特卡洛方法对正方晶格中自旋为1/2的反铁磁海森堡模型进行计算机模拟,给出能量、比热及均匀磁化率与温度的变化关系。结果表明:在各向同性情况下,温度约在kT/J=0.6处,比热有峰值,温度约在kT/J=1处,均匀磁化率达到饱和,且晶格大小的有限性对热力学量与温度的变化行为有一定的影响;在各向异性情况下,能量随着各向异性参数g的增加而减小,且在低温区,当g<1时,均匀磁化率随温度变化比较缓慢,当g>1时,均匀磁化率随温度降低向零指数衰减,在高温区,对不同各向异性参数g,均匀磁化率随温度变化行为趋于一致。