期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide
1
作者 Ali Badawi 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期372-377,共6页
The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are... The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt% of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density-voltage (J-V) characteristic curves of the assembled QDSSCs are measured at AM1.5 simulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33% increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2NPs photoanode. 展开更多
关键词 reduced graphene oxide nanocomposite photoanode back recombination rate quantum dots sensitized solar cell
下载PDF
CdS Quantum Dots-sensitized TiO_2 Nanotube Arrays for Solar Cells 被引量:1
2
作者 隋小涛 TAO Haizheng +4 位作者 LOU Xianchun WANG Xuelai FENG Jiamin ZENG Tao 赵修建 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期17-21,共5页
CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were... CdS quantum dots(QDs) sensitized TiO2 nanotube arrays photoelectrodes were investigated for their photovoltaic performance of quantum dots-sensitized solar cells. The highly ordered TiO2 nanotube arrays(TNAs) were synthesized on Ti foils by anodic oxidation method. Then CdS quantum dots were deposited onto the TiO2 nanotube arrays by successive ionic layer absorption and reaction(SILAR) method to serve as the sensitizers. Cd(NO3)2 and Na2S were used as the precursor materials of Cd+ and S2- ions, respectively. It is found that the CdS QDs sensitizer may significantly increase the light response of TiO2 nanotube arrays. With increasing CdS QDs deposition cycles, the visible light response increases. Maximum photocurrent was obtained for the QDs that have an absorption peak at about 500 nm. Under AM 1.5 G illuminations(100 mW cm^-2), a 4.85 mA/cm^2 short circuit current density was achieved, and the maximium energy conversion efficiency of the asprepared CdS QDs-sensitized TNAs solar cells was obtained as high as 0.81% at five SILAR cycles. 展开更多
关键词 quantum dots sensitized solar cell successive ionic layer adsorption and reaction TiO2 vnanotube arrays
下载PDF
Optical properties and dynamic process in metal ions doped on CdSe quantum dots sensitized solar cells
3
作者 Ha Thanh Tung Dang Huu Phuc 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第7期71-77,共7页
In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells wit... In recent years, the nanostructure for solar cells have attracted considerable attention from scientists as a result of a promising candidate for low cost devices. In this work, quantum dots sensitized solar cells with effective performance based on a co-sensitized Cd S∕Cd Se:Mn2+(or Cu2+) nanocrystal, which was made by successive ionic layer absorption and reaction, are discussed. The optical, physical, chemical, and photovoltaic properties of quantum dots sensitized solar cells were sensitized to Mn2+and Cu2+dopants. Therefore, the short current(JSC)of the quantum dot sensitized solar cells is boosted dramatically from 12.351 mA∕cm2 for pure Cd Se nanoparticles to 18.990 mA∕cm2 for Mn2+ions and 19.915 mA∕cm2 for Cu2+ions. Actually, metal dopant extended the band gap of pure Cd Se nanoparticles, reduced recombination, enhanced the efficiency of devices, and improved the charge transfer and collection. In addition, Mn2+and Cu2+dopants rose to the level of the conduction band of pure Cd Se nanoparticles, which leads to the reduction of the charge recombination, enhances the lightharvesting efficiency, and improves the charge diffusion and collection. The results also were confirmed by the obtained experimental data of photoluminescence decay and electrochemical impedance spectroscopy. 展开更多
关键词 CDS Cu Mn FTO Optical properties and dynamic process in metal ions doped on CdSe quantum dots sensitized solar cells
原文传递
Efficient quantum dot sensitized solar cells via improved loading amount management
4
作者 Wei Wang Yiling Xie +3 位作者 Fangfang He Yuan Wang Weinan Xue Yan Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期213-223,共11页
High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can... High light-harvesting efficiency and low interfacial charge transfer loss are essential for the fabrication of high-efficiency quantum dot-based solar cells(QDSCs). Increasing the thickness of mesoporous TiO2films can improve the loading of pre-synthesized QDs on the film and enhance the absorbance of photoanode, but commonly accompanied by the increase in the unfavorable charge recombination due to prolonged electron transmission paths. Herein, we systematically studied the influence of the balance between QD loading and TiO2film thickness on the performance of QDSCs. It is found that the relative thin photoanode prepared by the cationic surfactant-assisted multiple deposition procedure has achieved a high QD loading which is comparable to that of the thick photoanode commonly used. Under AM 1.5G illumination, Zn–Cu–In–Se and Zn–Cu–In–S based QDSCs with optimized 11.8 μm photoanodes show the PCE of 10.03% and 8.53%, respectively, which are comparable to the corresponding highest PCE of Zn–Cu–In–Se and Zn–Cu–In–S QDSCs(9.74% and 8.75%) with over 25.0 μm photoanodes. Similarly, an impressive PCE of 6.14% was obtained for the CdSe based QDSCs with a 4.1 μm photoanode, which is slightly lower than the best PCE(7.05%)of reference CdSe QDSCs with 18.1 μm photoanode. 展开更多
关键词 quantum dot sensitized solar cell PHOTOANODE Loading amount Surfactant-assisted deposition
下载PDF
Metal chalcogenide complex-mediated fabrication of Cu_2S film as counter electrode in quantum dot sensitized solar cells 被引量:6
5
作者 YU XueChao ZHU Jun +3 位作者 LIU Feng WEI JunFeng HU LinHua DAI SongYuan 《Science China Chemistry》 SCIE EI CAS 2013年第7期977-981,共5页
Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S... Cu2S film onto FTO glass substrate was obtained to function as counter electrode for polysulfide redox reactions in CdS/CdSe co-sensitized solar cells by sintering after spraying a metal chalcogenide complex, N4H9Cu7S4 solution. Relative to Pt counter electrode, the Cu2S counter electrode provides greater electrocatalytic activity and lower charge transfer resistance. The pre- pared CuzS counter electrode represented nanoflower-like porous film which was composed of Cu2S nanosheets on FTO and had a higher surface area and lower sheet resistance than that of sulfided brass Cu2S counter electrode. An energy conversion efficiency of 3.62% was achieved using the metal chalcogenide complex-mediated fabricated Cu2S counter electrode for CdS/CdSe co-sensitized solar cells under 1 sun, AM 1.5 illumination. 展开更多
关键词 metal chalcogenide complex Cu2S counter electrode catalytic activity quantum dot sensitized solar cells
原文传递
Enhanced light harvesting and electron collection in quantum dot sensitized solar cells by TiO_2 passivation on ZnO nanorod arrays 被引量:1
6
作者 赵海峰 吴强 +4 位作者 侯娟 曹海宾 井群 吴荣 刘志勇 《Science China Materials》 SCIE EI CSCD 2017年第3期239-250,共12页
Light capture and electron recombination are the essential processes that determine power conversion efficiency (PCE) in quantum dot sensitized solar cells (QD- SCs). It is well known that charges are easily trans... Light capture and electron recombination are the essential processes that determine power conversion efficiency (PCE) in quantum dot sensitized solar cells (QD- SCs). It is well known that charges are easily transported in well-built QDSCs based on nauorod arrays. However, this advantage can be drastically weakened by defects located at the zinc oxide (ZnO) array surface which permit faster electron recombination. Hence, we developed a composite nanostructure consisting of ZnO nanorods coated with orthorhombic configuration titanium dioxide (TiO2) nanopartides, which were synthesized using a solution of H3BO3 and (NH4)2TiF6. This composite nanostructure was designed to take the advantage of the enlarged surface area provided by the nanoparticles and improved electron transport along the nanorods, in order to yield good charge transport and light harvesting. At the same time, the TiO2/ZnO nanorod arrays have fewer recombination centers (hydroxyl groups) after TiO2 modification, which results in fewer electron trapping events at the ZnO nanorod surface; thereby, a reduced charge recombination and longer electron lifetime can be achieved. As a result, the PCE of the QDSCs with TiO2-nanopartides-decorated ZnO nanorod arrays photoelectrode reaches 4.8%, which is ~78% higher efficiency compared to 2.7% for solar cells without modification. 展开更多
关键词 TiO2 nanoparticles ZnO nanorod arrays quantum dot sensitized solar cells
原文传递
Boosting the efficiency of quantum dot–sensitized solar cells over 15%through light-harvesting enhancement
7
作者 Han Song Haoran Mu +3 位作者 Jian Yuan Baiquan Liu Gongxun Bai Shenghuang Lin 《SusMat》 2023年第4期543-554,共12页
How to improve the capacity of light-harvesting is still an important point and essential strategy for the assembling of high-efficiency quantum dot–sensitized solar cells(QDSCs).A believable approach is to implant n... How to improve the capacity of light-harvesting is still an important point and essential strategy for the assembling of high-efficiency quantum dot–sensitized solar cells(QDSCs).A believable approach is to implant new light absorption materials into QDSCs to stimulate the charge transfer.Herein,the few-layer black phosphorus quantum dots(BPQDs)are synthesized by electrochemical intercalation technology using bulk BP as source.Then the obtained BPQDs are deposited onto the surface of Zn–Cu–In–S–Se(ZCISSe)QD-sensitized TiO2 substrate to serve as another light-harvesting material for the first time.The experimental results have shown that BPQDs can not only increase the absorption intensity by photoanode but also reduce unnecessary charge recombination processes at the interface of photoanode/electrolyte.Through optimizing the size and deposition process of BPQDs,the champion power conversion efficiency of ZCISSe QDSCs is increased to 15.66%(26.88 mA/cm2,Voc=0.816 V,fill factor[FF]=0.714)when compared with the original value of 14.11%(Jsc=25.41 mA/cm^(2),Voc=0.779 V,FF=0.713). 展开更多
关键词 black phosphorus quantum dots high-efficiency LIGHT-HARVESTING quantum dot–sensitized solar cells
原文传递
Copper/cuprous sulfide electrode: preparation and performance
8
作者 Lina Xiao Ding Yuan +3 位作者 Pei Li Li Huang Bing-Wei Mao Dongping Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第6期1039-1043,共5页
Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-... Cuprous sulfide (Cu2S) is a direct band-gap p-type semiconductor with excellent ionic/electronic hybrid conductivity. Alt- hough Cu/Cu2S/sulfide or polysulfide system is adopted as counter electrode of quantum-dots-sensitized solar cells (QDSSC), the electrode process is seldom reported. Here, the electrochemical growth of Cu2S film on a copper (Cu) surface, the redox behaviors of sulfide and polysulfide, and the all-in-solid charge-transfer properties of Cu2S film are investigated. It is clarified that the copper electrode simultaneously undergoes an activated process, a membrane growth process, and a redox phase transformation process. The solid charge-transfer capability of CuzS is quantified with a high exchange-current density of 2.27 A/cm2, which elucidates that the Cu/CuzS electrode is a qualified material for counter electrodes of QDSSC. These results aid understanding of the physicochemical mechanism of QDSSC with a polysulfide electrolyte and Cu/Cu2S counter electrode. 展开更多
关键词 quantum dots sensitized solar cells counter electrode cuprous sulfide film growth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部