Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole en...Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.展开更多
A Cooper-pair box biased by a classical voltage and also irradiated by a squeezed state field is considered in order to find new ways to quantum communication and calculation. The quantum dynamics of the Cooper-pair b...A Cooper-pair box biased by a classical voltage and also irradiated by a squeezed state field is considered in order to find new ways to quantum communication and calculation. The quantum dynamics of the Cooper-pair box and the entanglement which is the core theoretics of quantum communication and calculation is investigated in this system, which is related to the squeezing parameter of the squeezed state, A model of Hamiltonian which represents the interaction between box and quantum field is introduced. Finally, the relationship between the entanglement and the squeezing parameter of the squeezed state is demonstrated.展开更多
A Hamiltonian which represents the interaction between a single Cooper-pair box and two quantized electromagnetic fields is considered in order to find new ways for quantum information. The wave function in Schrodinge...A Hamiltonian which represents the interaction between a single Cooper-pair box and two quantized electromagnetic fields is considered in order to find new ways for quantum information. The wave function in Schrodinger picture is obtained. The evolution of the entropy of the box as a function of the scaled time is ploted to measure the entanglement between the box and the fields. It is found that the entanglement is sensitive to the detuning between the Josephson energy and the fields frequency, increasing the detuning can decrease the entanglement.展开更多
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our ...The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.展开更多
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac...Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.展开更多
By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can ...By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.展开更多
This paper proposes the continuous controller design method for quantum Shannon entropy, which can continuously drive the entropy to track a desired trajectory. We also analyzed the controllability of Shannon entropy ...This paper proposes the continuous controller design method for quantum Shannon entropy, which can continuously drive the entropy to track a desired trajectory. We also analyzed the controllability of Shannon entropy in very short time interval. Simulations are done on five dimensional quantum system, which can verify the validation of the method.展开更多
We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculat...We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.展开更多
This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of ent...This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.展开更多
We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in ...We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.展开更多
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "L...Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.展开更多
The total quantum statistical entropy of Reissner-Nordstrom black holes inDirac field case is evaluated in this article. The space-time of the black holes is divided intothree regions: region 1 (r 】 r_o), region 2 (r...The total quantum statistical entropy of Reissner-Nordstrom black holes inDirac field case is evaluated in this article. The space-time of the black holes is divided intothree regions: region 1 (r 】 r_o), region 2 (r_o 】 r 】 r_i), and region 3 (r_i 】 r 】 0), where r_ois the radius of the outer event horizon, and Ti is the radius of the inner event horizon. The totalquantum statistical entropy of Reissner-Nordstrom black holes is S = S_1 + S_2 + S_3, where S_i (i= 1,2,3) is the entropy, contributed by regions 1,2,3. The detailed calculation shows that S_2 isneglectfully small. S_1 = w_t(π~2/45)k_b(A_o/ε~2β~3), S_3 = -w_t(π~2/45)k_b(A_i/ε~2β~3), whereA_o and A_i are, respectively, the areas of the outer and inner event horizons, w_t = 2~s[1 -2~(-(s+1))], s = d/2, d is the space-time dimension, here d = 4, s = 2. As r_i approaches r_o in theextreme case the total quantum statistical entropy of Reissner-Nordstrom black holes approacheszero.展开更多
A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes...A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.展开更多
The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is show...The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.展开更多
The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively c...The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively correlated with each other, one of which by Wang et al. (Phys. Lett. A 373, 58 (2008)) is the most striking in dominant anti-correlation with quantum mutual entropy. That is useful for molecular quantum computing and quantum information.展开更多
Shannon entropy for lower position and momentum eigenstates of Ptschl-Teller-like potential is evaluated. Based on the entropy densities demonstrated graphically, we note that the wave through of the position informat...Shannon entropy for lower position and momentum eigenstates of Ptschl-Teller-like potential is evaluated. Based on the entropy densities demonstrated graphically, we note that the wave through of the position information entropy density p (x) moves right when the potential parameter V1 increases and its amplitude decreases. However, its wave through moves left with the increase in the potential parameter 丨V2丨. Concerning the momentum information entropy density p(p), we observe that its amplitude increases with increasing potential parameter V1, but its amplitude decreases with increasing丨V2丨. The Bialynicki-Birula-Mycielski (BBM) inequality has also been tested for a number of states. Moreover, there exist eigenstates that exhibit squeezing in the momentum information entropy. Finally, we note that position information entropy increases with V1, but decreases with 丨V2丨, However, the variation of momentum information entropy is contrary to that of the position information entropy.展开更多
In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model wi...In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.展开更多
We use quantum field entropy to measure the degree of entanglement for a coherent state light field interacting with two atoms that are initially in an arbitrary two-qubit state. The influence of different mean photon...We use quantum field entropy to measure the degree of entanglement for a coherent state light field interacting with two atoms that are initially in an arbitrary two-qubit state. The influence of different mean photon number of the coherent field on the entropy of the field is discussed in detail when the two atoms are initially in one superposition state of the Bell states. The results show that the mean photon number of the light field can regulate the quantum entanglement between the atoms and light field.展开更多
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics.Entropy is one of the most fundamental physical concepts in thermodynamics.In this work,by solving the quantum...The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics.Entropy is one of the most fundamental physical concepts in thermodynamics.In this work,by solving the quantum Langevin equation,we study the von Neumann entropy of a particle undergoing quantum Brownian motion.We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function.The result is applied to the thermodynamic equilibrium initial state,which reproduces its classical counterpart in the high temperature limit.Based on these results,for those initial states having well-defined classical counterparts,we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit.Moreover,we find that for the thermodynamic equilibrium initial state,all terms odd inÿ are exactly zero.Our results bring important insights to the understanding of entropy in open quantum systems.展开更多
We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the ef...We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field (A/g), and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon. The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.展开更多
基金Youth Scientific Foundation of Sichuan Education Department,国家自然科学基金
文摘Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
文摘A Cooper-pair box biased by a classical voltage and also irradiated by a squeezed state field is considered in order to find new ways to quantum communication and calculation. The quantum dynamics of the Cooper-pair box and the entanglement which is the core theoretics of quantum communication and calculation is investigated in this system, which is related to the squeezing parameter of the squeezed state, A model of Hamiltonian which represents the interaction between box and quantum field is introduced. Finally, the relationship between the entanglement and the squeezing parameter of the squeezed state is demonstrated.
文摘A Hamiltonian which represents the interaction between a single Cooper-pair box and two quantized electromagnetic fields is considered in order to find new ways for quantum information. The wave function in Schrodinger picture is obtained. The evolution of the entropy of the box as a function of the scaled time is ploted to measure the entanglement between the box and the fields. It is found that the entanglement is sensitive to the detuning between the Josephson energy and the fields frequency, increasing the detuning can decrease the entanglement.
基金Project supported by the Natural Science Foundation of Shaanxi Province (Grant No 2001SL04), the Scientific and Technological Key Program Foundation of Shaanxi Province (Grant No 2002K05-G9).
文摘The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter γ, atomic distribution angle θ and coupling strength g between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter γ, and that both atomic distribution angle θ and coupling strength g between the field and the atom can influence the periodicity of field quantum entropy evolution.
基金supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).
文摘Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.
文摘This paper proposes the continuous controller design method for quantum Shannon entropy, which can continuously drive the entropy to track a desired trajectory. We also analyzed the controllability of Shannon entropy in very short time interval. Simulations are done on five dimensional quantum system, which can verify the validation of the method.
基金supported by the Science and Technology Program of Dezhou,Shandong Province,China (Grant No. 20080153)the Scientific Research Fund of Dezhou University,China (Grant No. 07024)
文摘We examine the single-atom entropy squeezing and the atom-field entanglement in a system of two moving twolevel atoms interacting with a single-mode coherent field in a lossless resonant cavity. Our numerical calculations indicate that the squeezing period, the squeezing time and the maximM squeezing can be controlled by appropriately choosing the atomic motion and the field-mode structure. The atomic motion leads to a periodical time evolution of entanglement between the two-atom and the field. Moreover, there exists corresponding relation between the time evolution properties of the atomic entropy squeezing and that of the entanglement between the two atoms and the field.
基金Project supported by the Scientific and Technological Program Foundation of Dezhou,Shandong Province of China (Grant No20080153)the Scientific Research Fund of Dezhou University of China (Grant No 07024)
文摘This paper investigates the entropy squeezing of a moving two-level atom interacting with the two-mode entangled coherent field via two-photon transition by using an entropic uncertainty relation and the degree of entanglement between the two-mode fields by using quantum relative entropy.The results obtained from numerical calculation indicate that the squeezed period,the duration of entropy squeezing and the maximal squeezing can be controlled by appropriately choosing the intensity of the light field,the atomic motion and the field-mode structure.The atomic motion leads to the periodic recovery of the initial maximal degree of entanglement between the two-mode fields.Moreover,there exists a corresponding relation between the time evolution properties of the atomic entropy squeezing and those of the entanglement between the two-mode fields.
基金supported by the National Natural Science Foundation of China(Grant No.6217070290)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 20040501500)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.21A0470)the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4557)Top-Notch Innovative Talent Program for Postgraduate Students of Shanghai Maritime University(Grant No.2021YBR009)。
文摘We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375005)partially by 20150964-SIP-IPN,Mexico
文摘Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
文摘The total quantum statistical entropy of Reissner-Nordstrom black holes inDirac field case is evaluated in this article. The space-time of the black holes is divided intothree regions: region 1 (r 】 r_o), region 2 (r_o 】 r 】 r_i), and region 3 (r_i 】 r 】 0), where r_ois the radius of the outer event horizon, and Ti is the radius of the inner event horizon. The totalquantum statistical entropy of Reissner-Nordstrom black holes is S = S_1 + S_2 + S_3, where S_i (i= 1,2,3) is the entropy, contributed by regions 1,2,3. The detailed calculation shows that S_2 isneglectfully small. S_1 = w_t(π~2/45)k_b(A_o/ε~2β~3), S_3 = -w_t(π~2/45)k_b(A_i/ε~2β~3), whereA_o and A_i are, respectively, the areas of the outer and inner event horizons, w_t = 2~s[1 -2~(-(s+1))], s = d/2, d is the space-time dimension, here d = 4, s = 2. As r_i approaches r_o in theextreme case the total quantum statistical entropy of Reissner-Nordstrom black holes approacheszero.
基金Supported by the State Key Program for Basic Research of China under Grant No 2011CBA00304the National Natural Science Foundation of China under Grant No 60836001the Tsinghua University Initiative Scientific Research Program under Grant No 20131089314
文摘A new type of superconductive true random number generator (TRNG) based on a negative-inductance superconducting quantum interference device (nSQUID) is proposed. The entropy harnessed to generate random numbers comes from the phenomenon of symmetry breaking in the nSQUID. The experimental circuit is fabricated by the Nb-based lift-off process. Low-temperature tests of the circuit verify the basic function of the proposed TRNG. The frequency characteristics of the TRNG have been analyzed by simulation. The generation rate of random numbers is expected to achieve hundreds of megahertz to tens of gigahertz.
基金Funded by the Natural Science Foundation of China (Grant No10375051)
文摘The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.10675050).
文摘The dynamics of four fidelities is studied for mixed coherent states and mixed squeezed states of Fermi-resonance coupling vibrations in molecule CS2. It is demonstrated that those fidelities are dominant-positively correlated with each other, one of which by Wang et al. (Phys. Lett. A 373, 58 (2008)) is the most striking in dominant anti-correlation with quantum mutual entropy. That is useful for molecular quantum computing and quantum information.
基金Project supported by COFAA-IPN (Grant No. 20120876-SIP-IN)
文摘Shannon entropy for lower position and momentum eigenstates of Ptschl-Teller-like potential is evaluated. Based on the entropy densities demonstrated graphically, we note that the wave through of the position information entropy density p (x) moves right when the potential parameter V1 increases and its amplitude decreases. However, its wave through moves left with the increase in the potential parameter 丨V2丨. Concerning the momentum information entropy density p(p), we observe that its amplitude increases with increasing potential parameter V1, but its amplitude decreases with increasing丨V2丨. The Bialynicki-Birula-Mycielski (BBM) inequality has also been tested for a number of states. Moreover, there exist eigenstates that exhibit squeezing in the momentum information entropy. Finally, we note that position information entropy increases with V1, but decreases with 丨V2丨, However, the variation of momentum information entropy is contrary to that of the position information entropy.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11074002 and 61275119)the Specialized Research Fund for the Doc-toral Program of Higher Education of China(Grant No.20103401110003)the Personal Development Foundation of Anhui Province,China(Grant No.2008Z018)
文摘In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404108)
文摘We use quantum field entropy to measure the degree of entanglement for a coherent state light field interacting with two atoms that are initially in an arbitrary two-qubit state. The influence of different mean photon number of the coherent field on the entropy of the field is discussed in detail when the two atoms are initially in one superposition state of the Bell states. The results show that the mean photon number of the light field can regulate the quantum entanglement between the atoms and light field.
基金support from the National Science Foundation of China under Grants Nos.11775001,11534002,and 11825001.
文摘The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics.Entropy is one of the most fundamental physical concepts in thermodynamics.In this work,by solving the quantum Langevin equation,we study the von Neumann entropy of a particle undergoing quantum Brownian motion.We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function.The result is applied to the thermodynamic equilibrium initial state,which reproduces its classical counterpart in the high temperature limit.Based on these results,for those initial states having well-defined classical counterparts,we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit.Moreover,we find that for the thermodynamic equilibrium initial state,all terms odd inÿ are exactly zero.Our results bring important insights to the understanding of entropy in open quantum systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field (A/g), and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon. The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.