The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuatio...According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.展开更多
Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expa...Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expansion scheme, the properties of the ground state and the anomalous quantum fluctuations are investigated in a strongly coupled electron-phonon system with special consideration of the electron-two-phonon interaction. The effective renormalization (ai) of the displacement of the squeezed phonons with the effect of the squeezed-coherent states of phonon and both the electron-displaced pbonon and the polaron-squeezed phonon correlations have been combined to obtain the anomalous quantum fluctuations for the corrections of the coherent state. Due to these non-adiabatic correlations, the effective displacement parameter ai is larger than the ordinary parameter ai (0) In comparison with the electron-one-phonon interaction (g) corrected as oig, we have found the electron-two-phonon interaction (gl) corrected as ai2gi is enhanced significantly. For this reason, the ground state energy (E(2)) contributed by the electron-two-phonon interaction is more negative than the single-phonon case (E01)) and the soliton solution is more stable. At the same time, the effects of the electron-two-phonon interaction greatly increase the polaron energy and the quantum fluctuations. Furthermore, in a deeper level, we have considered the effect of the polaron-squeezed phonon correlation (f-correlation). Since this correlation parameter f 〉 1, this effect will strengthen the electron-one and two-phonon interactions by fai9 and f2ai2g1, respectively. The final results show that the ground state energy and the polaron energy will appear more negative further and the quantum fluctuations will gain further improvement.展开更多
This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum flu...This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.展开更多
The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, i...The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, in order to understand the competition among quantum fluctuations (QFs), quenched disorder, and ferroelectric ordering. Two representative systems with sufficiently strong QFs and quenched disorders in competition with the ferroelectric ordering are investigated. We start from non-stoichiometric SrTiO3(STO) with the Sr/Ti ratio deviating slightly from one, which is believed to maintain strong QFs. Then, we address Ba/Ca co-doped Sr1-x(Ca0.6389Ba0.3611)xTiO3(SCBT) with the averaged Sr-site ionic radius identical to the Sr2+ ionic radius, which is believed to offer remarkable quenched disorder associated with the Sr-site ionic mismatch. The critical exponents associated with polarization P and dielectric susceptibility ε, respectively, as functions of temperature T close to the critical point Tc, are evaluated. It is revealed that both non-stoichiometric SrTiO3 and SCBT exhibit much bigger critical exponents than the Landau mean-field theory predictions. These critical exponents then decrease gradually with increasing doping level or deviation of Sr/Ti ratio from one. A transverse Ising model applicable to the Sr-site doped STO (e.g., Sr1-xCaxTiO3) at low level is used to explain the observed experimental data. It is suggested that the serious deviation of these critical exponents from the Landau theory predictions in these STO-based systems is ascribed to the significant QFs and quenched disorder by partially suppressing the long-range spatial correlation of electric dipoles around the transitions. The present work thus sheds light on our understanding of the critical behaviors of ferroelectric transitions in STO in the presence of quantum fluctuations and quenched disorder, whose effects have been demonstrated to be remarkable.展开更多
Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is propo...Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.展开更多
For time dependent inductive capacitive coupled circuits, the quantum fluctuations in the component circuits and the coupling part are computed. Generation of squeezing and the different effects of inductance and ca...For time dependent inductive capacitive coupled circuits, the quantum fluctuations in the component circuits and the coupling part are computed. Generation of squeezing and the different effects of inductance and capacitance couplings on the quantum fluctuations are rigorously given. Meanwhile, the thermal effects are included.展开更多
In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific exam...In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.展开更多
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junc...An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.展开更多
The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons a...The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons are calculated. Finally, the squeezing of the dark soliton is investigated by using homodyne detection and compared with bright soliton case.展开更多
The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of th...The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.展开更多
The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at z...The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at zero temperature are discussed. The results show that the interlayer anisotropy plays an important role in balancing the quantum competitions.展开更多
Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon fiel...Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.展开更多
In this paper, with the full field operator ψ expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose-Einstein condensates from microscopic physics. Includ...In this paper, with the full field operator ψ expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose-Einstein condensates from microscopic physics. Including the first-order term correction from single-particle excitation and the remaining higher-order term correction from collective excitations simultaneously, we obtain the formulation for a closed local expression of quantum backreaction Q, and discuss the influence on static Bose-Einstein condensates. Even though the quantum backreaction is small, it still has some influence on its dynamics.展开更多
We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a ...We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.展开更多
It is well known that the quantum fluctuation of entanglement(QFE) between Unruh–De Witt detector(modeled by a two-level atom) is always investigated in a relativistic setting. However, both of the Unruh radiation an...It is well known that the quantum fluctuation of entanglement(QFE) between Unruh–De Witt detector(modeled by a two-level atom) is always investigated in a relativistic setting. However, both of the Unruh radiation and quantum fluctuation effects play an important role in precise measurements of quantum entanglement. In this paper, we have quantitatively analyzed how the relativistic motion affects the QFE for two entangled Unruh–De Witt detectors, one of which is accelerated and interacting with the neighbor external scalar field. Our results show that the QFE, which initially increases by the Unruh thermal noise, will suddenly decay when the acceleration reaches to a considerably large value. Therefore, the relativistic effect will lead to non-negligible QFE effect. We also find that the initial QFE(without acceleration effect) reaches its minimum value at the maximally entangled state and the separable state. More importantly, our analysis demonstrates that although the QFE has a huge decay when the acceleration is greater than ~ 0.96, the ratio of △E/C is still very large, due to the simultaneous decay of concurrence to a very low value. Finally, enlightened by the well-known equivalence principle,we discuss the possibility of applying the above findings to the dynamics of QFE under the influence of gravitation field.展开更多
We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises. The expressions of O(s) and Tc are derived by means ...We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises. The expressions of O(s) and Tc are derived by means of the projection operator method, and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation. Based on the calculated results, it is found that the correlation strength A between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.展开更多
We study the statistics of the emitted filed from Rydberg atom confined inside a microcavity and interacting with a pump laser in the strong coupling regime. We explore the manifestation of the antibunching in connect...We study the statistics of the emitted filed from Rydberg atom confined inside a microcavity and interacting with a pump laser in the strong coupling regime. We explore the manifestation of the antibunching in connection with the internal system parameters.展开更多
Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for...Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix rho(q,q',beta). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.展开更多
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
文摘According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10574163)
文摘Based on the Holstein model Hamiltonian of one-dimensional molecular crystals, by making use of the expansion approach of the correlated squeezed-coherent states of phonon instead of the two-phonon coherent state expansion scheme, the properties of the ground state and the anomalous quantum fluctuations are investigated in a strongly coupled electron-phonon system with special consideration of the electron-two-phonon interaction. The effective renormalization (ai) of the displacement of the squeezed phonons with the effect of the squeezed-coherent states of phonon and both the electron-displaced pbonon and the polaron-squeezed phonon correlations have been combined to obtain the anomalous quantum fluctuations for the corrections of the coherent state. Due to these non-adiabatic correlations, the effective displacement parameter ai is larger than the ordinary parameter ai (0) In comparison with the electron-one-phonon interaction (g) corrected as oig, we have found the electron-two-phonon interaction (gl) corrected as ai2gi is enhanced significantly. For this reason, the ground state energy (E(2)) contributed by the electron-two-phonon interaction is more negative than the single-phonon case (E01)) and the soliton solution is more stable. At the same time, the effects of the electron-two-phonon interaction greatly increase the polaron energy and the quantum fluctuations. Furthermore, in a deeper level, we have considered the effect of the polaron-squeezed phonon correlation (f-correlation). Since this correlation parameter f 〉 1, this effect will strengthen the electron-one and two-phonon interactions by fai9 and f2ai2g1, respectively. The final results show that the ground state energy and the polaron energy will appear more negative further and the quantum fluctuations will gain further improvement.
基金supported by the Natural Science Foundation of the Educational Department of Liaoning Province,China (Grant Nos20060638 and 2008533)
文摘This paper stuides the magnetization and quantum fluctuations of an antiferro-antiferromagnetic (AF-AF) doublelayer at zero temperature. It is found that the exchanges and anisotropy constants affect the quantum fluctuations of spins. If the anisotropy exists, there will be no acoustic energy branch in the system. The anisotropy constant, antiferromagnetic intralayer and interlayer coupling have important roles in a balance of the quantum competition.
基金the National Basic Research Program of China(Grant Nos.2011CB922101 and 2009CB623303)the National Natural Science Foundation of China(Grant Nos.11234005 and 11074113)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, in order to understand the competition among quantum fluctuations (QFs), quenched disorder, and ferroelectric ordering. Two representative systems with sufficiently strong QFs and quenched disorders in competition with the ferroelectric ordering are investigated. We start from non-stoichiometric SrTiO3(STO) with the Sr/Ti ratio deviating slightly from one, which is believed to maintain strong QFs. Then, we address Ba/Ca co-doped Sr1-x(Ca0.6389Ba0.3611)xTiO3(SCBT) with the averaged Sr-site ionic radius identical to the Sr2+ ionic radius, which is believed to offer remarkable quenched disorder associated with the Sr-site ionic mismatch. The critical exponents associated with polarization P and dielectric susceptibility ε, respectively, as functions of temperature T close to the critical point Tc, are evaluated. It is revealed that both non-stoichiometric SrTiO3 and SCBT exhibit much bigger critical exponents than the Landau mean-field theory predictions. These critical exponents then decrease gradually with increasing doping level or deviation of Sr/Ti ratio from one. A transverse Ising model applicable to the Sr-site doped STO (e.g., Sr1-xCaxTiO3) at low level is used to explain the observed experimental data. It is suggested that the serious deviation of these critical exponents from the Landau theory predictions in these STO-based systems is ascribed to the significant QFs and quenched disorder by partially suppressing the long-range spatial correlation of electric dipoles around the transitions. The present work thus sheds light on our understanding of the critical behaviors of ferroelectric transitions in STO in the presence of quantum fluctuations and quenched disorder, whose effects have been demonstrated to be remarkable.
基金Project supported by the Natural Science Foundation of Heze University of Shandong Province, China (Grant No XY05WL01), the University Experimental Technology Foundation of Shandong Province, China (Grant No S04W138), the Natural Science Foundation of Shandong Province, China (Grant No Y2004A09) and the National Natural Science Foundation of China (Grant No 10574060).
文摘Based on the scheme of damped harmonic oscillator quantization and thermo-field dynamics (TFD), the quantization of mesoscopic damped double resonance RLC circuit with mutual capacitance-inductance coupling is proposed. The quantum fluctuations of charge and current of each loop in a squeezed vacuum state are studied in the thermal excitation case. It is shown that the fluctuations not only depend on circuit inherent parameters, but also rely on excitation quantum number and squeezing parameter. Moreover, due to the finite environmental temperature and damped resistance, the fluctuations increase with the temperature rising, and decay with time.
文摘For time dependent inductive capacitive coupled circuits, the quantum fluctuations in the component circuits and the coupling part are computed. Generation of squeezing and the different effects of inductance and capacitance couplings on the quantum fluctuations are rigorously given. Meanwhile, the thermal effects are included.
基金supported by the Natural Science Foundation of Yunnan Province (Grant No. 2010CD031)the National Natural Science Foun-dation of China (Grant Nos. 50906035, 51066002 and U0937604)
文摘In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
文摘An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.
文摘The quantum theory of dark soliton propagation in fibers is studied based on the linearization approximation. Then the uncertainties in photon number, phase, position (time) and momentum of quantized dark solitons are calculated. Finally, the squeezing of the dark soliton is investigated by using homodyne detection and compared with bright soliton case.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974137 and 10775100)
文摘The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.
基金Project supported by the Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University,China(Grant No.LZUMMM2010010)the Scientific Foundation of the Educational Department of Liaoning Province,China(Grant No.L2010390)+2 种基金the Natural Science Foundation of Liaoning Province of China(Grant No.20102171)the Scientific Technology Plan of Shenyang,China(Grant No.F10-205-1-33)the Excellent Talents Program of the University of Liaoning Province,China(Grant No.LR201031)
文摘The quantum fluctuations of a three-layer Heisenberg model with six sublattices are studied by the retarded Green's function method and the spin-wave theory. The effects of anisotropy on the quantum fluctuations at zero temperature are discussed. The results show that the interlayer anisotropy plays an important role in balancing the quantum competitions.
文摘Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10704031 and 1087150)the Scientific Research Foundation for Returned Scholars, Ministry of Education of China+1 种基金the Foundation of Shandong Educational Committee, China (Grant No J08LI60)the Research Project of ‘SUST Spring Bud',China (Grant No 2008AZZ093)
文摘In this paper, with the full field operator ψ expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose-Einstein condensates from microscopic physics. Including the first-order term correction from single-particle excitation and the remaining higher-order term correction from collective excitations simultaneously, we obtain the formulation for a closed local expression of quantum backreaction Q, and discuss the influence on static Bose-Einstein condensates. Even though the quantum backreaction is small, it still has some influence on its dynamics.
基金Supported by the Foundation of Scientific Research Education and Innovations under Grant No.11609506,Jinan University
文摘We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402600)the National Natural Science Foundation of China(Grant Nos.11690023,11373014,and 11633001)the Beijing Talents Fund of Organization Department of Beijing Municipal Committee of the CPC,and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23000000).
文摘It is well known that the quantum fluctuation of entanglement(QFE) between Unruh–De Witt detector(modeled by a two-level atom) is always investigated in a relativistic setting. However, both of the Unruh radiation and quantum fluctuation effects play an important role in precise measurements of quantum entanglement. In this paper, we have quantitatively analyzed how the relativistic motion affects the QFE for two entangled Unruh–De Witt detectors, one of which is accelerated and interacting with the neighbor external scalar field. Our results show that the QFE, which initially increases by the Unruh thermal noise, will suddenly decay when the acceleration reaches to a considerably large value. Therefore, the relativistic effect will lead to non-negligible QFE effect. We also find that the initial QFE(without acceleration effect) reaches its minimum value at the maximally entangled state and the separable state. More importantly, our analysis demonstrates that although the QFE has a huge decay when the acceleration is greater than ~ 0.96, the ratio of △E/C is still very large, due to the simultaneous decay of concurrence to a very low value. Finally, enlightened by the well-known equivalence principle,we discuss the possibility of applying the above findings to the dynamics of QFE under the influence of gravitation field.
基金Supported by the National Natural Science Foundation of China under Grant No 10363001.
文摘We investigate the intensity correlation function C(s) and its associated relaxation time Tc for a saturation model of single-mode laser with correlated noises. The expressions of O(s) and Tc are derived by means of the projection operator method, and effects of correlations between an additive noise and a multiplicative noise are discussed by numerical calculation. Based on the calculated results, it is found that the correlation strength A between the additive noise and the multiplicative noise can enhance the fluctuation decay of the laser intensity.
文摘We study the statistics of the emitted filed from Rydberg atom confined inside a microcavity and interacting with a pump laser in the strong coupling regime. We explore the manifestation of the antibunching in connection with the internal system parameters.
文摘Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for non-dissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix rho(q,q',beta). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.