We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equ...We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.展开更多
A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on...A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.展开更多
The effects of different time-independent and time-dependent couplings on two-atom entanglement are studied. The results show that the effects depend on the initial state. For the initial state |eeO〉, it is found th...The effects of different time-independent and time-dependent couplings on two-atom entanglement are studied. The results show that the effects depend on the initial state. For the initial state |eeO〉, it is found that different time-independent couplings make the case without entanglement exhibit entanglement, and time-dependent couplings turn the irregular entanglement regions into regular one. Under the case of decay, for the initial state |eg0〉, the different time-dependent couplings have disbenefit.展开更多
文摘We propose a reformulation of Newton’s second law of motion for charged particles and possible applications of the reformulation to quantum dynamics. We show that the negative energy states arising from the Dirac equation in relativistic quantum mechanics can be verified using the reformulating framework. We also discuss possible hidden dynamics underlying the concept of quantum jumps in quantum mechanics as outlined in Schr<span style="font-size:12px;white-space:nowrap;">ö</span>dinger’s article: ARE THERE QUANTUM JUMPS? In this case, we show that the hidden dynamics of quantum jumps are also determined by the Coulomb interaction between charged particles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61068001 and 11264042)the Postdoctoral Science Foundation of China(Grant No.2012M520612)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10347103 and 10305002 and the Natural Science Foundation of Liaoning Province under Grant No. 20031073
文摘The effects of different time-independent and time-dependent couplings on two-atom entanglement are studied. The results show that the effects depend on the initial state. For the initial state |eeO〉, it is found that different time-independent couplings make the case without entanglement exhibit entanglement, and time-dependent couplings turn the irregular entanglement regions into regular one. Under the case of decay, for the initial state |eg0〉, the different time-dependent couplings have disbenefit.