期刊文献+
共找到102,730篇文章
< 1 2 250 >
每页显示 20 50 100
Physical Layer Encryption of OFDM-PON Based on Quantum Noise Stream Cipher with Polar Code 被引量:1
1
作者 Xu Yinbo Gao Mingyi +3 位作者 Zhu Huaqing Chen Bowen Xiang Lian Shen Gangxiang 《China Communications》 SCIE CSCD 2024年第3期174-188,共15页
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e... Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security. 展开更多
关键词 physical layer encryption polar code quantum noise stream cipher
下载PDF
Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state
2
作者 汪澳 魏玉震 +3 位作者 姜敏 李泳成 陈虹 黄旭 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期204-211,共8页
We propose a new protocol for quantum teleportation(QT)which adopts the Brown state as the quantum channel.This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ide... We propose a new protocol for quantum teleportation(QT)which adopts the Brown state as the quantum channel.This work focuses on the teleportation of a single unknown two-qubit state via a Brown state channel in an ideal environment.To validate the effectiveness of our proposed scheme,we conduct experiments by using the quantum circuit simulator Quirk.Furthermore,we investigate the effects of four noisy channels,namely,the phase damping noise,the bit-flip noise,the amplitude damping noise,and the phase-flip noise.Notably,we employ Monte Carlo simulation to elucidate the fidelity density under various noise parameters.Our analysis demonstrates that the fidelity of the protocol in a noisy environment is influenced significantly by the amplitude of the initial state and the noise factor. 展开更多
关键词 quantum communication Brown state FIDELITY
下载PDF
基于开源Quantum ESPRESSO软件的固体物理教学模式创新与实践
3
作者 姜训勇 《创新教育研究》 2024年第4期198-204,共7页
为了解决固体物理课程学习中的难点,授课时引入开源Quantum ESPRESSO软件为学生提供全面的理论学习和实践训练。实践训练分为理论学习和实际操作两个阶段,使学生在理解固体物理的难点的同时获得实际操作经验。通过自主学习、实验报告的... 为了解决固体物理课程学习中的难点,授课时引入开源Quantum ESPRESSO软件为学生提供全面的理论学习和实践训练。实践训练分为理论学习和实际操作两个阶段,使学生在理解固体物理的难点的同时获得实际操作经验。通过自主学习、实验报告的撰写和实操演示等分层次的学习方式,学生逐渐提升对固体物理的整体理解水平。学生对这一学习方式的反应良好。Quantum ESPRESSO软件为学生提供了先进的学习工具,有效提高了固体物理课程的学习效果。 展开更多
关键词 quantum ESPRESSO 固体物理 开源软件 计算实践
下载PDF
Achieving 1.2 fm/Hz^(1/2)Displacement Sensitivity with Laser Interferometry in Two-Dimensional Nanomechanical Resonators:Pathways towards Quantum-Noise-Limited Measurement at Room Temperature 被引量:2
4
作者 Jiankai Zhu Luming Wang +8 位作者 Jiaqi Wu Yachun Liang Fei Xiao Bo Xu Zejuan Zhang Xiulian Fan Yu Zhou Juan Xia Zenghui Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第3期74-81,共8页
Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of no... Laser interferometry is an important technique for ultrasensitive detection of motion and displacement.We push the limit of laser interferometry through noise optimization and device engineering.The contribution of noises other than shot noise is reduced from 92.6%to 62.4%,demonstrating the possibility towards shotnoise-limited measurement.Using noise thermometry,we quantify the laser heating effect and determine the range of laser power values for room-temperature measurements.With detailed analysis and optimization of signal transduction,we achieve 1.2 fm/Hz^(1/2)displacement measurement sensitivity at room temperature in twodimensional(2D)Ca Nb_(2)O_(6)nanomechanical resonators,the best value reported to date among all resonators based on 2D materials.Our work demonstrates a possible pathway towards quantum-noise-limited measurement at room temperature. 展开更多
关键词 noise interferometry optimization
下载PDF
Sharing quantum nonlocality in the noisy scenario
5
作者 杨舒媛 侯晋川 贺衎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期199-211,共13页
It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's... It was showed in [Phys. Rev. Lett. 125 090401(2020)] that there exist unbounded number of independent Bobs who can share quantum nonlocality with a single Alice by performing sequentially measurements on the Bob's half of the maximally entangled pure two-qubit state. However, from practical perspectives, errors in entanglement generation and noises in quantum measurements will result in the decay of nonlocality in the scenario. In this paper, we analyze the persistency and termination of sharing nonlocality in the noisy scenario. We first obtain the two sufficient conditions under which there exist n independent Bobs who can share nonlocality with a single Alice under noisy measurements and the noisy initial two qubit entangled state. Analyzing the two conditions, we find that the influences on persistency under different kinds of noises can cancel each other out. Furthermore, we describe the change patterns of the maximal nonlocality-sharing number under the influence of different noises. Finally, we extend our investigation to the case of arbitrary finite-dimensional systems. 展开更多
关键词 Bell nonlocality quantum measurement quantum noise
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
6
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Quantum state protection from finite-temperature thermal noise with application to controlled quantum teleportation
7
作者 王驰 Sajede Harraz +1 位作者 张骄阳 丛爽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期261-271,共11页
We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise(FTTN).T... We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise(FTTN).The main strategy is to transfer the quantum system to a noise-robust state by weak measurement and feedforward control before the noise channel.Then we apply the environment-assisted measurement on the noise channel to select our desired damped states that are invertible to the initial state.After the noise channel,the reversal operations are applied to restore the initial state.We consider the protection of a single-qubit system,derive the analytical expressions of the success probability and the fidelity,and analyze the influence of key parameters on the performance of the proposed scheme.Unlike previous studies,there is no trade-off between the fidelity and the success probability in the proposed scheme;hence one could maximize them separately.Simulation results show that the proposed scheme can greatly improve the fidelity of the quantum state with a certain success probability.Moreover,the proposed scheme is successfully applied to improving the fidelity of controlled quantum teleportation through two independent FTTN channels from the perspective of protecting the shared entanglement. 展开更多
关键词 quantum feedforward control environment-assisted measurement weak measurement quantum teleportation
下载PDF
Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
8
作者 邸克 谈帅 +2 位作者 程安宇 刘宇 杜佳佳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期191-198,共8页
We present a theoretical scheme for broadband multi-channel quantum noise suppression and phase-sensitive modulation of continuous variables in a coupled resonant system with quantum entanglement properties.The effect... We present a theoretical scheme for broadband multi-channel quantum noise suppression and phase-sensitive modulation of continuous variables in a coupled resonant system with quantum entanglement properties.The effects of different coupling strengths,pumping power in suppressing quantum noise and controlling the width of quantum interference channels are analyzed carefully.Furthermore,quantum noise suppression at quadrature amplitude is obtained with phase-sensitive modulation.It shows that the entanglement strength of the output field and the quantum noise suppression effect can be enhanced significantly by a strong pumping filed due to interaction of pumping light with the nonlinear crystal.The full width at half maxima(FWHM)of the noise curve at the resonant peak(△=0 MHz)is broadened up to 2.17 times compared to the single cavity.In the strong coupling resonant system,the FWHM at △=0 MHz(△=±3.1 MHz)is also broadened up to 1.27(3.53)times compared to the weak coupling resonant system case.The multi-channel quantum interference creates an electromagnetically induced transparent-like line shape,which can be used to improve the transmission efficiency and stability of wave packets in quantum information processing and quantum memory. 展开更多
关键词 quantum entanglement broadband quantum interference phase-sensitive modulation
下载PDF
Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO_(2) Reduction 被引量:1
9
作者 Kangwang Wang Zhuofeng Hu +8 位作者 Peifeng Yu Alina M.Balu Kuan Li Longfu Li Lingyong Zeng Chao Zhang Rafael Luque Kai Yan Huixia Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期68-84,共17页
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in... We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR. 展开更多
关键词 quantum efficiency Electronic structure Steric interaction Bridging sites CO_(2)reduction
下载PDF
Non-Gaussian approach:Withstanding loss and noise of multi-scattering underwater channel for continuous-variable quantum teleportation
10
作者 吴昊 张航 +4 位作者 朱益武 罗高峰 左峙岳 阮新朝 郭迎 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期262-272,共11页
Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challeng... Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater.This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels.We propose a multi-scattering random channel model,which demonstrates characteristics of the excess noise in different propagation directions of communication links.Furthermore,we consider the fidelity of a continuous-variable quantum teleportation through seawater channel.To enhance transmission performance,non-Gaussian operations have been conducted.Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances. 展开更多
关键词 continuous-variable quantum teleportation multi-scattering underwater channel non-Gaussian operations
下载PDF
Proton‑Prompted Ligand Exchange to Achieve High‑Efficiency CsPbI_(3) Quantum Dot Light‑Emitting Diodes 被引量:1
11
作者 Yanming Li Ming Deng +2 位作者 Xuanyu Zhang Lei Qian Chaoyu Xiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期53-62,共10页
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv... CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h. 展开更多
关键词 CsPbI_(3) perovskite quantum dots Light-emitting diodes Ligand exchange Proton-prompted in-situ exchange
下载PDF
N-doped graphene quantum dot-decorated N-TiO2/P-doped porous hollow g-C_(3)N_(4) nanotube composite photocatalysts for antibiotic photodegradation and H2 production 被引量:2
12
作者 Jingshu Yuan Yao Zhang +2 位作者 Xiaoyan Zhang Junjie Zhang Shen’gen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期165-178,共14页
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r... Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion. 展开更多
关键词 N-doped TiO_(2) N-doped graphene quantum dots P-doped g-C_(3)N_(4) porous hollow nanotube heterojunction photocatalysis
下载PDF
Majorana noise model and its influence on the power spectrum
13
作者 陈书梦 丁思凡 +1 位作者 张振涛 刘东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期637-646,共10页
Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Ma... Majorana quantum computation offers a potential approach to securely manipulating and storing quantum data in a topological manner that may effectively resist the decoherence induced by local noise. However, actual Majorana qubit setups are susceptible to noise. In this study, from a quantum dynamics perspective, we develop a noise model for Majorana qubits that accounts for quasi-particle poisoning and Majorana overlapping with fluctuation. Furthermore, we focus on Majorana parity readout methodologies, specifically those leveraging an ancillary quantum dot, and carry out an indepth exploration of continuous measurement techniques founded on the quantum jump model of a quantum point contact.Utilizing these methodologies, we proceed to analyze the influence of noise on the afore-mentioned noise model, employing numerical computation to evaluate the power spectrum and frequency curve. In the culmination of our study, we put forward a strategy to benchmark the presence and detailed properties of noise in Majorana qubits. 展开更多
关键词 Majorana zero mode topological quantum computation topological devices decoherence and noise in qubits
下载PDF
Detecting the quantum phase transition from the perspective of quantum information in the Aubry–André model
14
作者 韦庚彪 叶柳 王栋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期171-176,共6页
We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the drivi... We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs. 展开更多
关键词 quantum phase transition entropic uncertainty quantum entanglement quantum steering
下载PDF
Delayed-measurement one-way quantum computing on cloud quantum computer
15
作者 Zhi-Peng Yang Yu-Ran Zhang +1 位作者 Fu-Li Li Heng Fan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期125-131,共7页
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap... One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation. 展开更多
关键词 measurement-based quantum computing quantum entanglement quantum gates
下载PDF
Quantum circuit-based proxy blind signatures:A novel approach and experimental evaluation on the IBM quantum cloud platform
16
作者 娄小平 昝慧茹 徐雪娇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期247-253,共7页
This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a... This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution. 展开更多
关键词 proxy blind signature quantum circuits quantum computation IBM quantum cloud platform
下载PDF
Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
17
作者 胡睿梓 祝圣凯 +9 位作者 张鑫 周圆 倪铭 马荣龙 罗刚 孔真真 王桂磊 曹刚 李海欧 郭国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期274-279,共6页
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr... The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future. 展开更多
关键词 quantum computation quantum dot quantum state readout
下载PDF
Balancing the minimum error rate and minimum copy consumption in quantum state discrimination
18
作者 Boxuan Tian Zhibo Hou +2 位作者 Guo-Yong Xiang Chuan-Feng Li Guang-Can Guo 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第7期40-42,39,I0002,I0003,共6页
Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ... Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination. 展开更多
关键词 quantum measurement quantum control quantum state discrimination
下载PDF
Noise reduction mechanism of high-speed railway box-girder bridges installed with MTMDs on top plate
19
作者 Xiaoan Zhang Xiaoyun Zhang +2 位作者 Jianjin Yang Li Yang Guangtian Shi 《Railway Engineering Science》 EI 2024年第4期518-532,共15页
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can... The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate. 展开更多
关键词 High-speed railway Box-girder bridge MTMDs noise control design noise reduction mechanism
下载PDF
QBIoT:A Quantum Blockchain Framework for IoT with an Improved Proof-of-Authority Consensus Algorithm and a Public-Key Quantum Signature
20
作者 Ang Liu Qing Zhang +3 位作者 Shengwei Xu Huamin Feng Xiu-bo Chen Wen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第7期1727-1751,共25页
The Internet of Things(IoT)is a network system that connects physical devices through the Internet,allowing them to interact.Nowadays,IoT has become an integral part of our lives,offering convenience and smart functio... The Internet of Things(IoT)is a network system that connects physical devices through the Internet,allowing them to interact.Nowadays,IoT has become an integral part of our lives,offering convenience and smart functionality.However,the growing number of IoT devices has brought about a corresponding increase in cybersecurity threats,such as device vulnerabilities,data privacy concerns,and network susceptibilities.Integrating blockchain technology with IoT has proven to be a promising approach to enhance IoT security.Nevertheless,the emergence of quantum computing poses a significant challenge to the security of traditional classical cryptography used in blockchain,potentially exposing it to quantum cyber-attacks.To support the growth of the IoT industry,mitigate quantum threats,and safeguard IoT data,this study proposes a robust blockchain solution for IoT that incorporates both classical and post-quantum security measures.Firstly,we present the Quantum-Enhanced Blockchain Architecture for IoT(QBIoT)to ensure secure data sharing and integrity protection.Secondly,we propose an improved Proof of Authority consensus algorithm called“Proof of Authority with Random Election”(PoARE),implemented within QBIoT for leader selection and new block creation.Thirdly,we develop a publickey quantum signature protocol for transaction verification in the blockchain.Finally,a comprehensive security analysis of QBIoT demonstrates its resilience against cyber threats from both classical and quantum adversaries.In summary,this research introduces an innovative quantum-enhanced blockchain solution to address quantum security concernswithin the realmof IoT.The proposedQBIoT framework contributes to the ongoing development of quantum blockchain technology and offers valuable insights for future research on IoT security. 展开更多
关键词 IOT quantum blockchain public-key quantum signature quantum hash function
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部