The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by the induced electric dipole has the same form as the one induced by magnetic di...The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by the induced electric dipole has the same form as the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.展开更多
We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of la...We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.展开更多
We study the quantum phase transition of ultracold atoms in the honeycomb optical lattice. The Hamiltonian of ultracold bosonic atoms in the honeycomb optical lattice is derived. We take the mean-field approximation a...We study the quantum phase transition of ultracold atoms in the honeycomb optical lattice. The Hamiltonian of ultracold bosonic atoms in the honeycomb optical lattice is derived. We take the mean-field approximation and further solve the Hamiltonian with the numerical diagonalization method. We obtain the phase diagram and find that the Mort-insulator (MI), density wave (DW) and modulated superfluid (MS) phases appear. Furthermore, the phase diagram is analyzed according to the order parameter and the average number of particles.展开更多
We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the drivi...We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.展开更多
In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-neares...In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.展开更多
We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromag...We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromagnet(AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid(sVBS). By continuously varying a parameter, the sVBS–AFM and AFM–cVBS boundaries merge into a direct sVBS–cVBS transition. Unlike previous models with putative deconfined AFM–cVBS transitions, e.g., the standard J–Q model,in our extended J–Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like.We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.展开更多
We study cold bosonic atoms on a two-dimensional inhomogeneous optical lattice with site-dependent atomic interactions. With the tight-binding approximation, we derive the extended Bose–Hubbard model. Base on the mea...We study cold bosonic atoms on a two-dimensional inhomogeneous optical lattice with site-dependent atomic interactions. With the tight-binding approximation, we derive the extended Bose–Hubbard model. Base on the mean-field approximation, the ground states are solved by the exact diagonalization method. We calculate the mean-field order parameter and particle number density for the ground states. We find the coexistence of superfluid phase and Mott-insulator phase on the two-dimensional inhomogeneous optical lattice in appropriate parameter ranges.展开更多
We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase ...We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase transition (QPT) of such spin chains. The results show that the DM interaction could influence the distribution of the regions of QPTs but could not produce new critical points for the spin-chain. This study extends the relation between geometric phases and QPTs.展开更多
We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orb...We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and △. When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e^2/2h or3e^2/2h. The possibility of tuning different quantum Hall states with M and △ suggests possible graphene-based spintronics and valleytronics applications.展开更多
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-g...We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behaviors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.展开更多
We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic ...We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic fields.We consider a mapped bilayer quantum Hall system at total fillingν_(t)=1/2+1/2where the intralayer interaction is repulsive and the interlayer interaction is attractive.We take exact diagonalization(ED)calculations on a torus to study the phase transition when the separation distance d/l_(B)is driven.The critical point at d_(c)/l_(B)=0.68 is characterized by a collapse of degeneracy and a crossing of energy levels.In the region d/l_(B)<d_(c)/l_(B),the states of each level are highly degenerate.The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0.We find an exciton stripe phase composed of bound pairs.The ferromagnetic ground state is destroyed by the strong effective attractive potential.An electron composite-Fermion(eCF)and a hole composite Fermion(hCF)are tightly bound.In the region d/lB>d_(c)/l_(B),a crossover from the d→d_(c)limit to the large d limit is observed.The electron and hole composite Fermion liquids(CFL)are realized by composite Fermions(CF)which attach opposite fluxes,respectively.展开更多
We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resona...We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.展开更多
Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the F...Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.展开更多
The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamenta...The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.展开更多
We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded o...We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.展开更多
We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality c...We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.展开更多
The quantum phase transition in the isotropic XY chain with three-site interaction has been studied by calculating the quantum discord, classicai correlation, and concurrence measuring entanglement. It is found that t...The quantum phase transition in the isotropic XY chain with three-site interaction has been studied by calculating the quantum discord, classicai correlation, and concurrence measuring entanglement. It is found that the quantum discord is a better choice than concurrence to signal the presence of the quantum phase transition in this model, since that for next-nearest neighbor spins the derivative of the quantum discord still exhibits singularity at the critical point while there is no more entanglement.展开更多
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more rob...We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.展开更多
In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quan...In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quantum logic gates only involve the internal states of two trapped ions. The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers. Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme. Thus the scheme is simple and the interaction time is very short, which is important in view of decoherence. The experimental feasibility for achieving this scheme is also discussed.展开更多
基金Supported by the China Scholarship Councilthe Hanjiang Scholar Project of Shaanxi University of Technology
文摘The quantum phase effects for induced electric and magnetic dipole moments are investigated. It is shown that the phase shift received by the induced electric dipole has the same form as the one induced by magnetic dipole moment, therefore the total phase is a hybrid of these two types of phase. This feature indicates that to have a decisive measurement on either one of these two phases, it is necessary to measure the velocity dependence of the observed phase.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075099,10974124,and 11105087)
文摘We investigate the strongly interacting lattice Bose gases on a lattice with two-body interaction of nearest neighbors characterized by pair tunneling. The excitation spectrum and the depletion of the condensate of lattice Bose gases are investigated using the Bogoliubov transformation method and the results show that there is a pair condensate as well as a single particle condensate. The various possible quantum phases, such as the Mott-insulator phase (MI), the superfluid phase (SF) of an individual atom, the charge density wave phase (CDW), the supersolid phase (SS), the pair-superfluid (PSF) phase, and the pair-supersolid phase (PSS) are discussed in different parametric regions within our extended Bose-Hubbard model using perturbation theory.
基金Supported by the Teaching and Research Foundation for the Outstanding Young Faculty of Southeast University
文摘We study the quantum phase transition of ultracold atoms in the honeycomb optical lattice. The Hamiltonian of ultracold bosonic atoms in the honeycomb optical lattice is derived. We take the mean-field approximation and further solve the Hamiltonian with the numerical diagonalization method. We obtain the phase diagram and find that the Mort-insulator (MI), density wave (DW) and modulated superfluid (MS) phases appear. Furthermore, the phase diagram is analyzed according to the order parameter and the average number of particles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12075001 and 12175001)Anhui Provincial Key Research and Development Plan(Grant No.2022b13020004)the Fund of CAS Key Laboratory of Quantum Information(Grant No.KQI201701)。
文摘We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.
基金Supported by the Chinese National Science Foundation of China under Grant Nos.10874003,11074004,and 11047160Numerical Computation of This Work was Carried out on the Parallel Computer Cluster of Institute for Condensed Matter Physics(ICMP) at School of Physics,Peking University
文摘In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.
基金Project supported by the NSF under Grant No.DMR-1710170 and by a Simons Investigator Grant.
文摘We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromagnet(AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid(sVBS). By continuously varying a parameter, the sVBS–AFM and AFM–cVBS boundaries merge into a direct sVBS–cVBS transition. Unlike previous models with putative deconfined AFM–cVBS transitions, e.g., the standard J–Q model,in our extended J–Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like.We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries.
基金Supported by the National Natural Science Foundation of China under Grant No.11274061
文摘We study cold bosonic atoms on a two-dimensional inhomogeneous optical lattice with site-dependent atomic interactions. With the tight-binding approximation, we derive the extended Bose–Hubbard model. Base on the mean-field approximation, the ground states are solved by the exact diagonalization method. We calculate the mean-field order parameter and particle number density for the ground states. We find the coexistence of superfluid phase and Mott-insulator phase on the two-dimensional inhomogeneous optical lattice in appropriate parameter ranges.
基金Project supported by National Natural Science Foundation of China (Grant Nos. 10847108 and 10775023)
文摘We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase transition (QPT) of such spin chains. The results show that the DM interaction could influence the distribution of the regions of QPTs but could not produce new critical points for the spin-chain. This study extends the relation between geometric phases and QPTs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1144721811274059+1 种基金11404278and 11447216)
文摘We theoretically investigate possible quantum Hall phases and corresponding edge states in graphene by taking a strong magnetic field, Zeeman splitting M, and sublattice potential △ into account but without spin–orbit interaction. It was found that for the undoped graphene either a quantum valley Hall phase or a quantum spin Hall phase emerges in the system, depending on relative magnitudes of M and △. When the Fermi energy deviates from the Dirac point, the quantum spin-valley Hall phase appears and its characteristic edge state is contributed only by one spin and one valley species. The metallic boundary states bridging different quantum Hall phases possess a half-integer quantized conductance, like e^2/2h or3e^2/2h. The possibility of tuning different quantum Hall states with M and △ suggests possible graphene-based spintronics and valleytronics applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675090)the Natural Science Foundation of Shandong Provincie,China(Grant No.ZR2022MA041)。
文摘We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behaviors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time.
文摘We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic fields.We consider a mapped bilayer quantum Hall system at total fillingν_(t)=1/2+1/2where the intralayer interaction is repulsive and the interlayer interaction is attractive.We take exact diagonalization(ED)calculations on a torus to study the phase transition when the separation distance d/l_(B)is driven.The critical point at d_(c)/l_(B)=0.68 is characterized by a collapse of degeneracy and a crossing of energy levels.In the region d/l_(B)<d_(c)/l_(B),the states of each level are highly degenerate.The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0.We find an exciton stripe phase composed of bound pairs.The ferromagnetic ground state is destroyed by the strong effective attractive potential.An electron composite-Fermion(eCF)and a hole composite Fermion(hCF)are tightly bound.In the region d/lB>d_(c)/l_(B),a crossover from the d→d_(c)limit to the large d limit is observed.The electron and hole composite Fermion liquids(CFL)are realized by composite Fermions(CF)which attach opposite fluxes,respectively.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant No.2021J01574).
文摘We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.
基金supported by the National Natural Science Foundation of China(Grant No.11475037)the Fundamental Research Funds for the Central Universities(Grant No.DUT19LK38)。
文摘Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.
文摘The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We propose a scheme to implement a two-qubit conditional quantum phase gate for the intracavity field via a single three-level ∧-type atom driven by two modes in a high-Q cavity. The quantum inforraation is encoded on the Fock states of the bimodal cavity. The gate's averaged fidelity is expected to reach 99.8%.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171397)the National Natural Science Foundation of China(Grant Nos.11535004,11375086,1175085,and 11120101005)+1 种基金the Foundation for Encouragement of College of Sciences(Grant No.LYLZJJ1616)the Pre-research Foundation of Army Engineering University of PLA
文摘We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.
基金Supported by National Natural Science Foundation of China under Grant Nos. 11075013 and 10974016
文摘The quantum phase transition in the isotropic XY chain with three-site interaction has been studied by calculating the quantum discord, classicai correlation, and concurrence measuring entanglement. It is found that the quantum discord is a better choice than concurrence to signal the presence of the quantum phase transition in this model, since that for next-nearest neighbor spins the derivative of the quantum discord still exhibits singularity at the critical point while there is no more entanglement.
基金supported by National Basic Research Program of China(Grant No.2013CBA01702)National Natural Science Foundation of China(Grant Nos.61377016,61575055,10974039,61307072,61308017,and 61405056)
文摘We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit's coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)+1 种基金Natural Science Foundation of Hunan Province, China (Grant No 07JJ3013)Postdoctoral Fund of China (Grant No 20070420825)
文摘In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quantum logic gates only involve the internal states of two trapped ions. The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers. Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme. Thus the scheme is simple and the interaction time is very short, which is important in view of decoherence. The experimental feasibility for achieving this scheme is also discussed.