期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fuzzification of Feynman Path Integral and Its Effect on Field Theory and Quantum Gravity—Reformation and Redevelopment of Quantum Theory
1
作者 Wenbing Qiu 《Journal of Modern Physics》 2020年第12期2053-2065,共13页
The quantum probability theory of fuzzy event is suggested by using the idea and method of fuzzy mathematics, giving the form of fuzzy event path integral, membership degree amplitude, fuzzy field function, Green func... The quantum probability theory of fuzzy event is suggested by using the idea and method of fuzzy mathematics, giving the form of fuzzy event path integral, membership degree amplitude, fuzzy field function, Green function, physical quantity and fuzzy diagram. This theory reforms quantum mechanics, making the later become its special case. This theory breaks unitarity, gauge invariance, probability conservation and information conservation, making these principles become approximate ones under certain conditions. This new theory, which needs no renormalization and can naturally give meaningful results which are in accordance with the experiments, is the proper theory to describe microscopic high-speed phenomenon, whereas quantum mechanics is only a proper theory to describe microscopic low-speed phenomenon. This theory is not divergent under the condition of there being no renormalization and infinitely many offsetting terms, thereby it can become the theoretical framework required for the quantization of gravity. 展开更多
关键词 quantum probability Fuzzy Event Path Integral Membership Degree Membership Degree Amplitude Fuzzy Graph
下载PDF
There Also Can Be Fuzziness in Quantum States Itself—Breaking through the Framework and the Principle of Quantum Mechanics
2
作者 Wenbing Qiu 《Journal of Modern Physics》 2020年第6期952-966,共15页
In this paper, an attempt is made to synthesize fuzzy mathematics and quantum mechanics. By using the method of fuzzy mathematics to blur the probability (wave) of quantum mechanics, the concept of fuzzy wave function... In this paper, an attempt is made to synthesize fuzzy mathematics and quantum mechanics. By using the method of fuzzy mathematics to blur the probability (wave) of quantum mechanics, the concept of fuzzy wave function is put forward to describe the fuzzy quantum probability. By applying the non-fuzzy formula of fuzzy quantity and Schrödinger wave equation of quantum mechanics, the membership function equation is established to describe the evolution of the fuzzy wave function. The concept of membership degree amplitude is introduced to calculate fuzzy probability amplitude. Some important concepts in fuzzy mathematics are also illustrated. 展开更多
关键词 Fuzzy quantum probability Fuzzy Wave Function Membership Function Membership Degree Amplitude Fuzzy probability Amplitude
下载PDF
Phase Transitions Governed by the Fifth Power of the Golden Mean and Beyond 被引量:5
3
作者 Hans Hermann Otto 《World Journal of Condensed Matter Physics》 2020年第3期135-158,共24页
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;... In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>&#269;</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span> 展开更多
关键词 Golden Mean Phase Transitions Hard-Hexagon Respectively Hard-Square Gas Model quantum probability Information Relativity Theory (IRT) ε-Infinity Theory Superconductivity Tammes Problem Viral Morphology Helical Microtubules Janičko Number Sequence Topological quantum Computation Fibonacci Lattice CRYSTALLOGRAPHY
下载PDF
The properties of an asymmetric Gaussian potential quantum well qubit in RbCl crystal
4
作者 Yong Sun Xiujuan Miao +1 位作者 Zhaohua Ding Jinglin Xiao 《Journal of Semiconductors》 EI CAS CSCD 2017年第4期6-9,共4页
With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited st... With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited states(GFES) in a RbCl crystal asymmetric Gaussian potential quantum well(AGPQW).It concludes:(i) Twoenergy-level of the AGPQW may be seen as a qubit.(ii) When the electron located in the superposition state of the two-energy-level system,the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period T0=22.475 fs.(iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential(AGP) in the AGPQW growth direction,the electron probability density presents only one peak configuration located in the coordinate of z 〉 0,whereas it is zero in the range of z 〈 0.(iv) The oscillatory period is a decreasing function of the AGPQW height and the polaron radius,(v) The oscillating period is a decreasing one in the confinement potential R 〈 0.24 nm,whereas it is an increasing one in the confinement potential R 〉 0.24 nm and it takes a minimum value in R = 0.24 nm. 展开更多
关键词 RbCl crystal asymmetric Gaussian potential quantum well qubit probability density oscillatory period
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部