In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through...In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through tracking the forces experienced, just like checking the meter's result in quantum measurement process. This treatment can build the nonadiabatic surface hopping on a physical foundation, instead of the usual fictitious and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.展开更多
The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory ...The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.展开更多
A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the lin...A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the linear combination of two particular solutions of the black hole wavefunction is not physical although each of them is physical, if we think that the quantum gravity should reduce into its corresponding classical counterpart in which the gravity vanishes. It seems to confirm the argument, given by Alwis and MacIntire, that a possible resolution on the quantum gravity is to give up the superposition principle.展开更多
We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found tha...We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.展开更多
Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure...Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant in the mean-field approximation of open Bose-Hubbard dynamics.展开更多
The intrinsic product polarization and intramolecular isotope effect of the S(~1D,~3P) + HD reaction have been investigated on both the lowest singlet state(1A) and the triplet state(3A and 3A) potential energy...The intrinsic product polarization and intramolecular isotope effect of the S(~1D,~3P) + HD reaction have been investigated on both the lowest singlet state(1A) and the triplet state(3A and 3A) potential energy surfaces by using quasi-classical trajectory and quantum mechanical methods.The calculations indicate that intramolecular isotope effects are different on the three electronic states.The stereodynamics study shows that the P(θr) distributions,P(φ r) distributions,and polarization-dependent differential cross sections(PDDCSs)(00) are sensitive to mass factor and the product angular momentum vectors are not only aligned but also oriented.展开更多
A tilted Liouville-master equation in Hilbert space is presented for Markovian open quantum systems.We demonstrate that it is the unraveling of the tilted quantum master equation.The latter is widely used in the analy...A tilted Liouville-master equation in Hilbert space is presented for Markovian open quantum systems.We demonstrate that it is the unraveling of the tilted quantum master equation.The latter is widely used in the analysis and calculations of stochastic thermodynamic quantities in quantum stochastic thermodynamics.展开更多
基金Supported by the Major State Basic Research Project of China under Grant Nos.2011CB808502 and 2012CB932704the National Natural Science Foundation of China under Grant Nos.101202101 and 10874176
文摘In this work we propose a quantum trajectory approach to the powerful molecular dynamics simulation with surface hopping, from an insight that an effective "observation" is actually implied in the simulation through tracking the forces experienced, just like checking the meter's result in quantum measurement process. This treatment can build the nonadiabatic surface hopping on a physical foundation, instead of the usual fictitious and conceptually inconsistent hopping algorithms. The effects and advantages of the proposed scheme are preliminarily illustrated by a two-surface model system.
基金Supported by the Scientific Research Foundation of Shaanxi University of Technology under Grant No SLGKYQD2-03the National Natural Science Foundation of China under Grant Nos 11374191 and 11347156the Research Fund for the Doctoral Program of Higher Education under Grant No 20130131110005
文摘The quantum interference pattern in the double-slit experiment is qualitatively reproduced by using the entangled trajectory molecular dynamics method and compared with previous works. We compare entangled trajectory and classical trajectory with the same initial state in the phase space to show quantum effect in the evolution of trajectories. It is involved with breakdown in the statistical independence of the trajectories. Although our result does not agree well with exact quantum calculation in quantitatively with loss of part of interference pattern peaks, we can offer a reasonable explanation by analyzing quantum interference of two Gaussian wave packets in the phase space.
基金supported by the Science Paper Foundation of Beijing Jiaotong University of China
文摘A modified de Broglie-Bohm approach is generalized to the Schwarzschild black hole. By using this method, the quantum potential and the quantum trajectories of the black hole are investigated. And we find that the linear combination of two particular solutions of the black hole wavefunction is not physical although each of them is physical, if we think that the quantum gravity should reduce into its corresponding classical counterpart in which the gravity vanishes. It seems to confirm the argument, given by Alwis and MacIntire, that a possible resolution on the quantum gravity is to give up the superposition principle.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0307700 and 2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.11627807,11774175,11534004,11774129,11975012,and 11604119)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.30916011207)the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20170101153JC).
文摘We investigate high-order harmonic generation from atoms irradiated by bichromatic counter-rotating circularly polarized laser pulses by numerically solving the time-dependent Schrödinger equation.It is found that the minimum energy position of the harmonic spectrum and the non-integer order optical radiation are greatly discrepant for different atomic potentials.By analyzing the quantum trajectory of the harmonic emission,discrepancies among the harmonic spectra from different potentials can be attributed to the action of the potential on the ionized electrons.In addition,based on the influence of the driving light intensity on the overall intensity and ellipticity of higher order harmonics,the physical conditions for generating a high-intensity circularly polarized harmonic can be obtained.
基金supported in part by the Ministry of Education and Science of the Republic of Serbia (Grant No. ON171017)
文摘Quantum dispersions of various sets of dynamical variables of an open Bose-Hubbard system in a classical limit are studied. To this end, an open system is described in terms of stochastic evolution of its quantum pure states. It is shown that the class of variables that display classical behaviour crucially depends on the type of noise. This is relevant in the mean-field approximation of open Bose-Hubbard dynamics.
文摘The intrinsic product polarization and intramolecular isotope effect of the S(~1D,~3P) + HD reaction have been investigated on both the lowest singlet state(1A) and the triplet state(3A and 3A) potential energy surfaces by using quasi-classical trajectory and quantum mechanical methods.The calculations indicate that intramolecular isotope effects are different on the three electronic states.The stereodynamics study shows that the P(θr) distributions,P(φ r) distributions,and polarization-dependent differential cross sections(PDDCSs)(00) are sensitive to mass factor and the product angular momentum vectors are not only aligned but also oriented.
基金supported by the National Science Foundation of China under Grant No.11174025 and No.11575016.
文摘A tilted Liouville-master equation in Hilbert space is presented for Markovian open quantum systems.We demonstrate that it is the unraveling of the tilted quantum master equation.The latter is widely used in the analysis and calculations of stochastic thermodynamic quantities in quantum stochastic thermodynamics.