Based on a hybrid system consisting of a quantum dot coupled with a double-sided micropillar cavity, we investigate the implementation of an error-detected photonic quantum routing controlled by the other photon. The ...Based on a hybrid system consisting of a quantum dot coupled with a double-sided micropillar cavity, we investigate the implementation of an error-detected photonic quantum routing controlled by the other photon. The computational errors from unexpected experimental imperfections are heralded by single photon detections, resulting in a unit fidelity for the present scheme, so that this scheme is intrinsically robust. We discuss the performance of the scheme with currently achievable experimental parameters. Our results show that the present scheme is efficient. Furthermore, our scheme could provide a promising building block for quantum networks and distributed quantum information processing in the future.展开更多
An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitra...An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.展开更多
We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is ...We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.展开更多
Through the study of the factorization conditions of a wave function made up of two, three and four qubits, we propose an analytical expression which can characterize entangled states in terms of the coefficients of t...Through the study of the factorization conditions of a wave function made up of two, three and four qubits, we propose an analytical expression which can characterize entangled states in terms of the coefficients of the wave function and density matrix elements.展开更多
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple c...Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks" and to keep all the merits of the original cryptosystem.展开更多
^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadru...^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.展开更多
基金Project supported by the Scientific Research Foundation of Shanxi Institute of Technology(Grant No.201706001)the Fund for Shanxi "1331 Project" Key Subjects Construction+2 种基金the China Postdoctoral Science Foundation(Grant No.2017M612411)the Education Department Foundation of Henan Province,China(Grant No.18A140009)the National Natural Science Foundation of China(Grant Nos.61821280,11604190,and 61465013)
文摘Based on a hybrid system consisting of a quantum dot coupled with a double-sided micropillar cavity, we investigate the implementation of an error-detected photonic quantum routing controlled by the other photon. The computational errors from unexpected experimental imperfections are heralded by single photon detections, resulting in a unit fidelity for the present scheme, so that this scheme is intrinsically robust. We discuss the performance of the scheme with currently achievable experimental parameters. Our results show that the present scheme is efficient. Furthermore, our scheme could provide a promising building block for quantum networks and distributed quantum information processing in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60678022 and 10704001, the Specialized Research Pund for the Doctoral Program of Higher Education under Grant No 20060357008, the Key Program of the Education Department of Anhui Province under Grant Nos KJ2009A048Z, the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos 2010SQRL153ZD and 2010SQRL187.
文摘An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
基金Supported by the Natural Science Foundation of China under Grant Nos 10534030 and 10874134, the National Basic Research Program of China under Grant No 2006CB921504, and Key Project of Ministry of Education of China under Grant No 708063.
文摘We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i = p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exeiton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.
文摘Through the study of the factorization conditions of a wave function made up of two, three and four qubits, we propose an analytical expression which can characterize entangled states in terms of the coefficients of the wave function and density matrix elements.
基金Supported by the National Natural Science Foundation of China under Grant No 61003256, the Natural Science Foundation of CQ CSTC (Nos 2009BB2282 and 2008BB2193), the Doctor Foundation of Chongqing University of Posts and Telecommunications (A2009-01), and the Foundation of Chongqing Key Laboratory of Electronic Commerce and Logistics (Nos ECML1003 and ECML1010).
文摘Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14(2009)574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks" and to keep all the merits of the original cryptosystem.
基金supported bythe National Natural Science Foundation of China(10374103)the National Basic Research Programme of China(2001CB309309)andthe National Knowledge Innovation Programof the Chinese Academy of Sciences(KJCX2-W1-3)
基金National Natural Science Foundation of China 22275159 and 22072133.Leading Innovation and Entrepreneurship Team of Zhejiang Province 2020R01003.
文摘^(23)Na is a nuclear magnetic resonance(NMR)-active isotope with a nuclear spin quantum number of 3/2.^(23)Na relaxation phenomenon is at the core of ^(23)Na NMR measurement and analysis.Due to the dominance of quadrupolar interaction,the relaxation behavior of ^(23)Na is physically and mathematically more complex than that of a typical spin-1/2 isotope.In this review,we overview the semi-classical Redfield theory for deriving the formulations of ^(23)Na relaxation.We show that the relaxation behaviors of ^(23)Na can be quantitatively described by constructing the spectral density functions based on the second-order perturbation theory.In addition,we summarize the applications of ^(23)Na relaxometry in different research fields,including biomedicine,sodium ion batteries,and quantum information processing.Because sodium is an essential element in our body,food and industrial materials,the research on sodium by ^(23)Na NMR emerges as important future directions.The theoretical and practical understandings on ^(23)Na relaxation are the step stones for mastering advanced ^(23)Na NMR techniques.