We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy cent...We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.展开更多
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and...In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.展开更多
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission lin...This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.展开更多
A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages be...A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.展开更多
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolv...We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.展开更多
Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the di...Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones,by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11305021the Fundamental Research Funds for the Central Universities of China under Grants Nos 3132014229 and 3132014328
文摘We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanome- chanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while eapacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the sealability and controllability. Our methods open an alter- native perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing.
基金Supported by the National Fundamental Research Program under Grant No.2007CB925204the National Natural Science Foundation of China under Grant Nos.10775048 and 10325523the Education Committee of Hunan Province under Grant No.08W012
文摘In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant No 06JJ50014)the Key Project Foundation of the Education Commission of Hunan Province of China (Grant No 06A055)
文摘This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on de-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, hut also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB923102)the National Natural Science Foundation of China (Grant No.11074199)
文摘A protocol is proposed to generate atomic entangled states and implement quantum information transfer in a cavity quantum electrodynamics system. It utilizes Raman transitions or stimulated Raman adiabatic passages between two systems to entangle the ground states of two three-state A-type atoms trapped in a single mode cavity. It does not need the measurements on cavity field nor atomic detection and can be implemented in a deterministic fashion. Since the present protocol is insensitive to both cavity decay and atomic spontaneous emission, it may have some interesting applications in quantum information processing.
文摘We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
基金partly supported by the National Natural Science Foundation of China(Grant No.U1330201)
文摘Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearestneighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones,by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing.