期刊文献+
共找到22,934篇文章
< 1 2 250 >
每页显示 20 50 100
Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
1
作者 卢鹏丽 揽继茂 +3 位作者 唐建新 张莉 宋仕辉 朱虹羽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期743-754,共12页
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ... The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms. 展开更多
关键词 social networks influence maximization metaheuristic optimization quantum-behaved particle swarm optimization Lévy flight
下载PDF
Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii
2
作者 Yung-Chang Cheng Cheng-Kang Lee 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第5期963-980,共18页
This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspens... This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system. 展开更多
关键词 Speed-dependent nonlinear creep model quantum-behaved particle swarm optimization Uniform design Wheel rolling radius Hunting stability
下载PDF
A Novel Quantum-Behaved Particle Swarm Optimization Algorithm
3
作者 Tao Wu Lei Xie +2 位作者 Xi Chen Amir Homayoon Ashrafzadeh Shu Zhang 《Computers, Materials & Continua》 SCIE EI 2020年第5期873-890,共18页
The efficient management of ambulance routing for emergency requests is vital to save lives when a disaster occurs.Quantum-behaved Particle Swarm Optimization(QPSO)algorithm is a kind of metaheuristic algorithms appli... The efficient management of ambulance routing for emergency requests is vital to save lives when a disaster occurs.Quantum-behaved Particle Swarm Optimization(QPSO)algorithm is a kind of metaheuristic algorithms applied to deal with the problem of scheduling.This paper analyzed the motion pattern of particles in a square potential well,given the position equation of the particles by solving the Schrödinger equation and proposed the Binary Correlation QPSO Algorithm Based on Square Potential Well(BC-QSPSO).In this novel algorithm,the intrinsic cognitive link between particles’experience information and group sharing information was created by using normal Copula function.After that,the control parameters chosen strategy gives through experiments.Finally,the simulation results of the test functions show that the improved algorithms outperform the original QPSO algorithm and due to the error gradient information will not be over utilized in square potential well,the particles are easy to jump out of the local optimum,the BC-QSPSO is more suitable to solve the functions with correlative variables. 展开更多
关键词 Ambulance routing problem quantum-behaved particle swarm optimization square potential well CONVERGENCE
下载PDF
Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization 被引量:1
4
作者 高飞 李卓球 童恒庆 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1196-1201,共6页
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu... This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises. 展开更多
关键词 parameter estimation online chaos system quantum particle swarm optimization
下载PDF
Improved Quantum-Behaved Particle Swarm Optimization 被引量:2
5
作者 Jianping Li 《Open Journal of Applied Sciences》 2015年第6期240-250,共11页
To enhance the performance of quantum-behaved PSO, some improvements are proposed. First, an encoding method based on the Bloch sphere is presented. In this method, each particle carries three groups of Bloch coordina... To enhance the performance of quantum-behaved PSO, some improvements are proposed. First, an encoding method based on the Bloch sphere is presented. In this method, each particle carries three groups of Bloch coordinates of qubits, and these coordinates are actually the approximate solutions. The particles are updated by rotating qubits about an axis on the Bloch sphere, which can simultaneously adjust two parameters of qubits, and can automatically achieve the best matching of two adjustments. The optimization process is employed in the n-dimensional space [-1, 1]n, so this approach fits to many optimization problems. The experimental results show that this algorithm is superior to the original quantum-behaved PSO. 展开更多
关键词 swarm INTELLIGENCE particle swarm optimization QUANTUM Potential WELL ENCODING Method
下载PDF
Online AUV Path Replanning Using Quantum-Behaved Particle Swarm Optimization with Selective Differential Evolution 被引量:1
6
作者 Hui Sheng Lim Christopher K.H.Chin +1 位作者 Shuhong Chai Neil Bose 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期33-50,共18页
This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimizatio... This paper presents an online AUV(autonomous underwater vehicle)path planner that employs path replanning approach and the SDEQPSO(selective differential evolution-hybridized quantum-behaved particle swarm optimization)algorithm to optimize an AUV mission conducted in an unknown,dynamic and cluttered ocean environment.The proposed path replanner considered the effect of ocean currents in path optimization to generate a Pareto-optimal path that guides the AUV to its target within minimum time.The optimization was based on the onboard sensor data measured from the environment,which consists of a priori unknown dynamic obstacles and spatiotemporal currents.Different sensor arrangements for the forward-looking sonar and horizontal acoustic Doppler current profiler(H-ADCP)were considered in 2D and 3D simulations.Based on the simulation results,the SDEQPSO path replanner was found to be capable of generating a time-optimal path that offered up to 13%reduction in travel time compared to the situation where the vehicle simply followed a path with the shortest distance.The proposed replanning technique also showed consistently better performance over a reactive path planner in terms of solution quality,stability,and computational efficiency.Robustness of the replanner was verified under stochastic process using the Monte Carlo method.The generated path fulfilled the vehicle’s safety and physical constraints,while intelligently exploiting ocean currents to improve the vehicle’s efficiency. 展开更多
关键词 Autonomous underwater vehicle path planning particle swarm optimization sonar detection Monte Carlo methods
下载PDF
Using Improved Particle Swarm Optimization Algorithm for Location Problem of Drone Logistics Hub
7
作者 Li Zheng Gang Xu Wenbin Chen 《Computers, Materials & Continua》 SCIE EI 2024年第1期935-957,共23页
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ... Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively. 展开更多
关键词 Drone logistics location problem mathematical model DIVERSITY particle swarm optimization
下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques
8
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine particle swarm optimization Principal component analysis Debris flow susceptibility
下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
9
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
10
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
11
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 Big COVID-19 Data Machine Learning Hyperparameter optimization particle swarm optimization Computational Intelligence
下载PDF
Fault Diagnosis of Power Electronic Circuits Based on Adaptive Simulated Annealing Particle Swarm Optimization 被引量:1
12
作者 Deye Jiang Yiguang Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期295-309,共15页
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i... In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits. 展开更多
关键词 Fault diagnosis power electronic circuit particle swarm optimization backpropagation neural network
下载PDF
The study of a neutron spectrum unfolding method based on particle swarm optimization combined with maximum likelihood expectation maximization 被引量:1
13
作者 Hong-Fei Xiao Qing-Xian Zhang +5 位作者 He-Yi Tan Bin Shi Jun Chen Zhi-Qiang Cheng Jian Zhang Rui Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期149-160,共12页
The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In or... The neutron spectrum unfolding by Bonner sphere spectrometer(BSS) is considered a complex multidimensional model,which requires complex mathematical methods to solve the first kind of Fredholm integral equation. In order to solve the problem of the maximum likelihood expectation maximization(MLEM) algorithm which is easy to suffer the pitfalls of local optima and the particle swarm optimization(PSO) algorithm which is easy to get unreasonable flight direction and step length of particles, which leads to the invalid iteration and affect efficiency and accuracy, an improved PSO-MLEM algorithm, combined of PSO and MLEM algorithm, is proposed for neutron spectrum unfolding. The dynamic acceleration factor is used to balance the ability of global and local search, and improves the convergence speed and accuracy of the algorithm. Firstly, the Monte Carlo method was used to simulated the BSS to obtain the response function and count rates of BSS. In the simulation of count rate, four reference spectra from the IAEA Technical Report Series No. 403 were used as input parameters of the Monte Carlo method. The PSO-MLEM algorithm was used to unfold the neutron spectrum of the simulated data and was verified by the difference of the unfolded spectrum to the reference spectrum. Finally, the 252Cf neutron source was measured by BSS, and the PSO-MLEM algorithm was used to unfold the experimental neutron spectrum.Compared with maximum entropy deconvolution(MAXED), PSO and MLEM algorithm, the PSO-MLEM algorithm has fewer parameters and automatically adjusts the dynamic acceleration factor to solve the problem of local optima. The convergence speed of the PSO-MLEM algorithm is 1.4 times and 3.1 times that of the MLEM and PSO algorithms. Compared with PSO, MLEM and MAXED, the correlation coefficients of PSO-MLEM algorithm are increased by 33.1%, 33.5% and 1.9%, and the relative mean errors are decreased by 98.2%, 97.8% and 67.4%. 展开更多
关键词 particle swarm optimization Maximum likelihood expectation maximization Neutron spectrum unfolding Bonner spheres spectrometer Monte Carlo method
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
14
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
在芯片上三维的网络印射是在关于芯片的三维的网络的研究的一个关键问题。直接使用的印射的算法的质量影响在 IP 核心之间的通讯效率并且在电源消费的优化和整个薄片的产量起一个重要作用。在这篇论文,基本概念和薄片上的三维的网络的... 在芯片上三维的网络印射是在关于芯片的三维的网络的研究的一个关键问题。直接使用的印射的算法的质量影响在 IP 核心之间的通讯效率并且在电源消费的优化和整个薄片的产量起一个重要作用。在这篇论文,基本概念和薄片上的三维的网络的相关工作被介绍。表现量的粒子群优化算法第一次在薄片上被用于三维的网络的印射的问题。模拟结果证明印射的算法基于粒子群算法与印射的算法相比与好一些的优化性能基于表现量的粒子群算法有更快的集中速度。它能有效地也减少在薄片上三维的网络印射的电源消费。 展开更多
关键词 粒子群优化算法 映射算法 三维网络 片上网络 量子行为 粒子群算法 映射问题 仿真结果
原文传递
Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process
15
作者 Jian Long Kai Deng Renchu He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期43-57,共15页
Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear... Gasoline blending scheduling optimization can bring significant economic and efficient benefits to refineries.However,the optimization model is complex and difficult to build,which is a typical mixed integer nonlinear programming(MINLP)problem.Considering the large scale of the MINLP model,in order to improve the efficiency of the solution,the mixed integer linear programming-nonlinear programming(MILP-NLP)strategy is used to solve the problem.This paper uses the linear blending rules plus the blending effect correction to build the gasoline blending model,and a relaxed MILP model is constructed on this basis.The particle swarm optimization algorithm with niche technology(NPSO)is proposed to optimize the solution,and the high-precision soft-sensor method is used to calculate the deviation of gasoline attributes,the blending effect is dynamically corrected to ensure the accuracy of the blending effect and optimization results,thus forming a prediction-verification-reprediction closed-loop scheduling optimization strategy suitable for engineering applications.The optimization result of the MILP model provides a good initial point.By fixing the integer variables to the MILPoptimal value,the approximate MINLP optimal solution can be obtained through a NLP solution.The above solution strategy has been successfully applied to the actual gasoline production case of a refinery(3.5 million tons per year),and the results show that the strategy is effective and feasible.The optimization results based on the closed-loop scheduling optimization strategy have higher reliability.Compared with the standard particle swarm optimization algorithm,NPSO algorithm improves the optimization ability and efficiency to a certain extent,effectively reduces the blending cost while ensuring the convergence speed. 展开更多
关键词 BLEND optimization algorithm Neural networks particle swarm optimization Mixed integer programming
下载PDF
Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm
16
作者 Danlei Chen Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期244-255,共12页
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature... Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving. 展开更多
关键词 optimal design Process systems particle swarm optimization Simulated annealing Mathematical modeling
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
17
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization Random forest The Bayesian algorithm Ensemble learning particle swarm optimization
下载PDF
Reconstruction and stability of Fe_(3)O_(4)(001)surface:An investigation based on particle swarm optimization and machine learning
18
作者 柳洪盛 赵圆圆 +2 位作者 邱实 赵纪军 高峻峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期27-31,共5页
Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface ... Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface structure of Fe_(3)O_(4)at atomic scale.Here,using a combination of first-principles calculations,particle swarm optimization(PSO)method and machine learning,we investigate the possible reconstruction and stability of Fe_(3)O_(4)(001)surface.The results show that besides the subsurface cation vacancy(SCV)reconstruction,an A layer with Fe vacancy(A-layer-V_(Fe))reconstruction of the(001)surface also shows very low surface energy especially at oxygen poor condition.Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V_(Fe)reconstruction.Our results are also instructive for the study of surface reconstruction of other metal oxides. 展开更多
关键词 surface reconstruction magnetite surface particle swarm optimization machine learning
下载PDF
Recognition model and algorithm of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain
19
作者 Han-shan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期273-283,共11页
In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization... In order to improve the recognition rate and accuracy rate of projectiles in six sky-screens intersection test system,this work proposes a new recognition method of projectiles by combining particle swarm optimization support vector and spatial-temporal constrain of six sky-screens detection sensor.Based on the measurement principle of the six sky-screens intersection test system and the characteristics of the output signal of the sky-screen,we analyze the existing problems regarding the recognition of projectiles.In order to optimize the projectile recognition effect,we use the support vector machine and basic particle swarm algorithm to form a new recognition algorithm.We set up the particle swarm algorithm optimization support vector projectile information recognition model that conforms to the six sky-screens intersection test system.We also construct a spatial-temporal constrain matching model based on the spatial geometric relationship of six sky-screen intersection,and form a new projectile signal recognition algorithm with six sky-screens spatial-temporal information constraints under the signal classification mechanism of particle swarm optimization algorithm support vector machine.Based on experiments,we obtain the optimal penalty and kernel function radius parameters in the PSO-SVM algorithm;we adjust the parameters of the support vector machine model,train the test signal data of every sky-screen,and gain the projectile signal classification results.Afterwards,according to the signal classification results,we calculate the coordinate parameters of the real projectile by using the spatial-temporal constrain of six sky-screens detection sensor,which verifies the feasibility of the proposed algorithm. 展开更多
关键词 Six sky-screens intersection test system Pattern recognition particle swarm optimization Support vector machine PROJECTILE
下载PDF
Adaptive Multi-Updating Strategy Based Particle Swarm Optimization
20
作者 Dongping Tian Bingchun Li +3 位作者 Jing Liu Chen Liu Ling Yuan Zhongzhi Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2783-2807,共25页
Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers fr... Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate. 展开更多
关键词 particle swarm optimization local optima acceleration coefficients swarm diversity premature convergence
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部