To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an op...To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.展开更多
If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in ...If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.展开更多
Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be...Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.展开更多
Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital...Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. Fundamental unit in building of QCA circuits is a QCA cell. A QCA cell is an elementary building block which can be used to build basic gates and logic devices in QCA architectures. This paper evaluates the performance of various implementations of QCA based XOR gates and proposes various novel layouts with better performance parameters. We presented the various QCA circuit design methodology for XOR gate. These layouts show less number of crossovers and lesser cell count as compared to the conventional layouts already present in the literature. These design topologies have special functions in communication based circuit applications. They are particularly useful in phase detectors in digital circuits, arithmetic operations and error detection & correction circuits. The comparison of various circuit designs is also given. The proposed designs can be effectively used to realize more complex circuits. The simulations in the present work have been carried out using QCADesigner tool.展开更多
The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A...The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.展开更多
Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This pape...Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.展开更多
Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS)...Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.展开更多
Quantum-dot cellular automata (QCA) technology has been widely considered as an alternative to complementary metal-oxide-semiconductor (CMOS) due to QCA's inherent merits.Many interesting QCA-based logic circuits ...Quantum-dot cellular automata (QCA) technology has been widely considered as an alternative to complementary metal-oxide-semiconductor (CMOS) due to QCA's inherent merits.Many interesting QCA-based logic circuits with smaller feature size,higher operating frequency,and lower power consumption than CMOS have been presented.However,QCA is limited in its sequential circuit design with high performance flip-flops.Based on a brief introduction of QCA and dual-edge triggered (DET) flip-flop,we propose two original QCA-based D and JK DET flip-flops,offering the same data throughput of corresponding single-edge triggered (SET) flip-flops at half the clock pulse frequency.The logic functionality of the two proposed flip-flops is verified with the QCADesigner tool.All the proposed QCA-based DET flip-flops show higher performance than their SET counterparts in terms of data throughput.Furthermore,compared with a previous DET D flip-flop,the number of cells,covered area,and time delay of the proposed DET D flip-flop are reduced by 20.5%,23.5%,and 25%,respectively.By using a lower clock pulse frequency,the proposed DET flip-flops are promising for constructing QCA sequential circuits and systems with high performance.展开更多
New technologies such as quantum-dot cellular automata(QCA) have been showing some remarkable characteristics that standard complementary-metal-oxide semiconductor(CMOS) in deep sub-micron cannot afford. Modeling syst...New technologies such as quantum-dot cellular automata(QCA) have been showing some remarkable characteristics that standard complementary-metal-oxide semiconductor(CMOS) in deep sub-micron cannot afford. Modeling systems and designing multiple-valued logic gates with QCA have advantages that facilitate the design of complicated logic circuits. In this paper, we propose a novel creative concept for quaternary QCA(QQCA). The concept has been set in QCASim, the new simulator developed by our team exclusively for QCAs’ quaternary mode. Proposed basic quaternary logic gates such as MIN, MAX, and different types of inverters(SQI, PQI, NQI, and IQI) have been designed and verified by QCASim. This study will exemplify how fast and accurately QCASim works by its handy set of CAD tools. A 1×4 decoder is presented using our proposed main gates.Preference points such as the minimum delay, area, and complexity have been achieved in this work. QQCA main logic gates are compared with quaternary gates based on carbon nanotube field-effect transistor(CNFET). The results show that the proposed design is more efficient in terms of latency and energy consumption.展开更多
Designing logic circuits using complementary metal-oxide-semiconductor(CMOS)technology at the nano scale has been faced with various challenges recently.Undesirable leakage currents,the short-effect channel,and high e...Designing logic circuits using complementary metal-oxide-semiconductor(CMOS)technology at the nano scale has been faced with various challenges recently.Undesirable leakage currents,the short-effect channel,and high energy dissipation are some of the concerns.Quantum-dot cellular automata(QCA)represent an appropriate alternative for possible CMOS replacement in the future because it consumes an insignificant amount of energy compared to the standard CMOS.The key point of designing arithmetic circuits is based on the structure of a 1-bit full adder.A low-complexity full adder block is beneficial for developing various intricate structures.This paper represents scalable 1-bit QCA full adder structures based on cell interaction.Our proposed full adders encompass preference aspects of QCA design,such as a low number of cells used,low latency,and small area occupation.Also,the proposed structures have been expanded to larger circuits,including a 4-bit ripple carry adder(RCA),a 4-bit ripple borrow subtractor(RBS),an add/sub circuit,and a 2-bit array multiplier.All designs were simulated and verified using QCA Designer-E version 2.2.This tool can estimate the energy dissipation as well as evaluate the performance of the circuits.Simulation results showed that the proposed designs are efficient in complexity,area,latency,cost,and energy dissipation.展开更多
The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were ...The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner.Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder(ESDBA)is 26% faster than the carry flow adder(CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder(EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead(CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of(N – 1)+3.5 clock cycles compared to the N*One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.展开更多
Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary ...Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary metal-oxide-semiconductor(CMOS)technology and can significantly improve the design of various logic circuits.We propose a new method for implementing a T-latch in QCA technology in this paper.The proposed method uses the intrinsic features of QCA in timing and clock phases,and therefore,the proposed cell structure is less occupied and less power-consuming than existing implementation methods.In the proposed T-latch,compared to previous best designs,reductions of 6.45%in area occupation and 44.49%in power consumption were achieved.In addition,for the first time,a reset-based T-latch and a T-latch with set and reset capabilities are designed.Using the proposed T-latch,a new 3-bit counter is developed which reduces 2.14%cell numbers compared to the best of previous designs.Moreover,based on the 3-bit counter,a 4-bit counter is designed,which reduces 0.51%cell numbers and 4.16%cross-section area compared to previous designs.In addition,two selective counters are introduced to count from 0 to 5 and from 2 to 5.Simulations were performed using QCADesigner and QCAPro tools in coherence vector engine mode.The proposed circuits are compared with related designs in terms of delay,cell numbers,area,and leakage power.展开更多
Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received me...Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro- posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility ofQCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless cation architecture such as nano-transmitters and nano-receivers展开更多
Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is ...Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is reversible logic,which has applications in many areas,including nanotechnology,DNA computing,quantum computing,fault tolerance,and low-power complementary metal-oxide-semiconductor(CMOS).An electrical circuit is classified as reversible if it has an equal number of inputs and outputs,and a one-to-one relationship.A reversible circuit is conservative if the EXOR of the inputs and the EXOR of the outputs are equivalent.In addition,quantum-dot cellular automata(QCA)is one of the state-of-the-art approaches that can be used as an alternative to traditional technologies.Hence,we propose an efficient conservative gate with low power demand and high speed in this paper.First,we present a reversible gate called ANG(Ahmadpour Navimipour Gate).Then,two non-resistant QCA ANG and reversible fault-tolerant ANG structures are implemented in QCA technology.The suggested reversible gate is realized through the Miller algorithm.Subsequently,reversible fault-tolerant ANG is implemented by the 2DW clocking scheme.Furthermore,the power consumption of the suggested ANG is assessed under different energy ranges(0.5Ek,1.0Ek,and 1.5Ek).Simulations of the structures and analysis of their power consumption are performed using QCADesigner 2.0.03 and QCAPro software.The proposed gate shows great improvements compared to recent designs.展开更多
Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection b...Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.展开更多
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d...[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique.展开更多
Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural f...Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.展开更多
To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general...To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.展开更多
The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are anal...The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are analyzed. An improved CA model of two lanes one-way freeway is presented, where some vehicle accidents will occur when the necessary conditions are simultaneously satisfied. The characteristics of traffic flow under different rainfall intensities are discussed and the accident probabilities are analyzed via the simulation experiments by using variable speed limit (VSL) and incoming flow control. The results indicate that the measures are effective especially during heavy rainstorms or short-time heavy rainfall. According to different rainfall intensities, an appropriate strategy should be adopted in order to reduce the probability of vehicle accidents and enhance traffic flux as well.展开更多
文摘To fill the continuous needs for faster processing elements with less power consumption causes large pressure on the complementary metal oxide semiconductor(CMOS)technology developers.The scaling scenario is not an option nowadays and other technologies need to be investigated.The quantum-dot cellular automata(QCA)technology is one of the important emerging nanotechnologies that have attracted much researchers’attention in recent years.This technology has many interesting features,such as high speed,low power consumption,and small size.These features make it an appropriate alternative to the CMOS technique.This paper suggests three novel structures of XNOR gates in the QCA technology.The presented structures do not follow the conventional approaches to the logic gates design but depend on the inherent capabilities of the new technology.The proposed structures are used as the main building blocks for a single-bit comparator.The resulted circuits are simulated for the verification purpose and then compared with existing counterparts in the literature.The comparison results are encouraging to append the proposed structures to the library of QCA gates.
文摘If an external point charge and the movable charges of an isolated quantum-dot cellular automata (QCA) cell have the same polarity, the point charge greatly affects the polarization (P) of the cell only when it is in a narrow band with periodically changing width. The center of the band is on a radius R circle. The ratio of R to the electric charge (q) is a constant determined by the parameters of the cell. A QCA cell can be used as charge detector based on the above phenomenon.
文摘Quantum-dot cellular automata(QCA)is an emerging computational paradigm which can overcome scaling limitations of the existing complementary metal oxide semiconductor(CMOS)technology.The existence of defects cannot be ignored,considering the fabrication of QCA devices at the molecular level where it could alter the functionality.Therefore,defects in QCA devices need to be analyzed.So far,the simulation-based displacement defect analysis has been presented in the literature,which results in an increased demand in the corresponding mathematical model.In this paper,the displacement defect analysis of the QCA main primitive,majority voter(MV),is presented and carried out both in simulation and mathematics,where the kink energy based mathematical model is applied.The results demonstrate that this model is valid for the displacement defect in QCA MV.
文摘Quantum-dot cellular automaton (QCA) is an emerging, promising, future generation nanoelectronic computational architecture that encodes binary information as electronic charge configuration of a cell. It is a digital logic architecture that uses single electrons in arrays of quantum dots to perform binary operations. Fundamental unit in building of QCA circuits is a QCA cell. A QCA cell is an elementary building block which can be used to build basic gates and logic devices in QCA architectures. This paper evaluates the performance of various implementations of QCA based XOR gates and proposes various novel layouts with better performance parameters. We presented the various QCA circuit design methodology for XOR gate. These layouts show less number of crossovers and lesser cell count as compared to the conventional layouts already present in the literature. These design topologies have special functions in communication based circuit applications. They are particularly useful in phase detectors in digital circuits, arithmetic operations and error detection & correction circuits. The comparison of various circuit designs is also given. The proposed designs can be effectively used to realize more complex circuits. The simulations in the present work have been carried out using QCADesigner tool.
文摘The authors present an analysis of the fault tolerant properties and the effects of temperature on an exclusive OR (XOR) gate and a full adder device implemented using quantum-dot cellular automata (QCA) structures. A Hubbard-type Hamiltonian and the Inter-cellular Hartree approximation have been used for modeling, and a uniform random distribution has been implemented for the simulated dot displacements within cells. We have shown characteristic features of all four possible input configurations for the XOR device. The device performance degrades significantly as the magnitude of defects and the temperature increase. Our results show that the fault-tolerant characteristics of an XOR device are highly dependent on the input configurations. The input signal that travels through the wire crossing (also called a crossover) in the central part of the device weakens the signal significantly. The presence of multiple wire crossings in the full adder design has a major impact on the functionality of the device. Even at absolute zero temperature, the effect of the dot displacement defect is very significant. We have observed that the breakdown characteristic is much more pronounced in the full adder than in any other devices under investigation.
文摘Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool.
文摘Quantum-dot cellular automata (QCA) based on cryptography is a new paradigm in the field of nanotechnology. The overall performance of QCA is high compared to traditional complementary metal-oxide semiconductor (CMOS) technology. To achieve data security during nanocommunication, a cryptography-based application is proposed. The devised circuit encrypts the input data and passes it to an output channel through a nanorouter cum data path selector, where the data is decrypted back to its original form. The results along with theoretical implication prove the accuracy of the circuit. Power dissipation and circuit complexity of the circuit have been analyzed.
基金Project (No.Y1110808) supported by the Natural Science Foundation of Zhejiang Province,China
文摘Quantum-dot cellular automata (QCA) technology has been widely considered as an alternative to complementary metal-oxide-semiconductor (CMOS) due to QCA's inherent merits.Many interesting QCA-based logic circuits with smaller feature size,higher operating frequency,and lower power consumption than CMOS have been presented.However,QCA is limited in its sequential circuit design with high performance flip-flops.Based on a brief introduction of QCA and dual-edge triggered (DET) flip-flop,we propose two original QCA-based D and JK DET flip-flops,offering the same data throughput of corresponding single-edge triggered (SET) flip-flops at half the clock pulse frequency.The logic functionality of the two proposed flip-flops is verified with the QCADesigner tool.All the proposed QCA-based DET flip-flops show higher performance than their SET counterparts in terms of data throughput.Furthermore,compared with a previous DET D flip-flop,the number of cells,covered area,and time delay of the proposed DET D flip-flop are reduced by 20.5%,23.5%,and 25%,respectively.By using a lower clock pulse frequency,the proposed DET flip-flops are promising for constructing QCA sequential circuits and systems with high performance.
文摘New technologies such as quantum-dot cellular automata(QCA) have been showing some remarkable characteristics that standard complementary-metal-oxide semiconductor(CMOS) in deep sub-micron cannot afford. Modeling systems and designing multiple-valued logic gates with QCA have advantages that facilitate the design of complicated logic circuits. In this paper, we propose a novel creative concept for quaternary QCA(QQCA). The concept has been set in QCASim, the new simulator developed by our team exclusively for QCAs’ quaternary mode. Proposed basic quaternary logic gates such as MIN, MAX, and different types of inverters(SQI, PQI, NQI, and IQI) have been designed and verified by QCASim. This study will exemplify how fast and accurately QCASim works by its handy set of CAD tools. A 1×4 decoder is presented using our proposed main gates.Preference points such as the minimum delay, area, and complexity have been achieved in this work. QQCA main logic gates are compared with quaternary gates based on carbon nanotube field-effect transistor(CNFET). The results show that the proposed design is more efficient in terms of latency and energy consumption.
文摘Designing logic circuits using complementary metal-oxide-semiconductor(CMOS)technology at the nano scale has been faced with various challenges recently.Undesirable leakage currents,the short-effect channel,and high energy dissipation are some of the concerns.Quantum-dot cellular automata(QCA)represent an appropriate alternative for possible CMOS replacement in the future because it consumes an insignificant amount of energy compared to the standard CMOS.The key point of designing arithmetic circuits is based on the structure of a 1-bit full adder.A low-complexity full adder block is beneficial for developing various intricate structures.This paper represents scalable 1-bit QCA full adder structures based on cell interaction.Our proposed full adders encompass preference aspects of QCA design,such as a low number of cells used,low latency,and small area occupation.Also,the proposed structures have been expanded to larger circuits,including a 4-bit ripple carry adder(RCA),a 4-bit ripple borrow subtractor(RBS),an add/sub circuit,and a 2-bit array multiplier.All designs were simulated and verified using QCA Designer-E version 2.2.This tool can estimate the energy dissipation as well as evaluate the performance of the circuits.Simulation results showed that the proposed designs are efficient in complexity,area,latency,cost,and energy dissipation.
文摘The advent of development of high-performance, low-power digital circuits is achieved by a suitable emerging nanodevice called quantum-dot cellular automata(QCA). Even though many efficient arithmetic circuits were designed using QCA, there is still a challenge to implement high-speed circuits in an optimized manner.Among these circuits, one of the essential structures is a parallel multi-digit decimal adder unit with significant speed which is very attractive for future environments. To achieve high speed, a new correction logic formulation method is proposed for single and multi-digit BCD adder. The proposed enhanced single-digit BCD adder(ESDBA)is 26% faster than the carry flow adder(CFA)-based BCD adder. The multi-digit operations are also performed using the proposed ESDBA, which is cascaded innovatively. The enhanced multi-digit BCD adder(EMDBA) performs two 4-digit and two 8-digit BCD addition 50% faster than the CFA-based BCD adder with the nominal overhead of the area. The EMDBA performs two 4-digit BCD addition 24% faster with 23% decrease in the area, similarly for 8-digit operation the EMDBA achieves 36% increase in speed with 21% less area compared to the existing carry look ahead(CLA)-based BCD adder design. The proposed multi-digit adder produces significantly less delay of(N – 1)+3.5 clock cycles compared to the N*One digit BCD adder delay required by the conventional BCD adder method. It is observed that as per our knowledge this is the first innovative proposal for multi-digit BCD addition using QCA.
基金Project supported by the Iran National Science Foundation(No.4005782)。
文摘Quantum-dot cellular automata(QCA)is a new nanotechnology for the implementation of nano-sized digital circuits.This nanotechnology is remarkable in terms of speed,area,and power consumption compared to complementary metal-oxide-semiconductor(CMOS)technology and can significantly improve the design of various logic circuits.We propose a new method for implementing a T-latch in QCA technology in this paper.The proposed method uses the intrinsic features of QCA in timing and clock phases,and therefore,the proposed cell structure is less occupied and less power-consuming than existing implementation methods.In the proposed T-latch,compared to previous best designs,reductions of 6.45%in area occupation and 44.49%in power consumption were achieved.In addition,for the first time,a reset-based T-latch and a T-latch with set and reset capabilities are designed.Using the proposed T-latch,a new 3-bit counter is developed which reduces 2.14%cell numbers compared to the best of previous designs.Moreover,based on the 3-bit counter,a 4-bit counter is designed,which reduces 0.51%cell numbers and 4.16%cross-section area compared to previous designs.In addition,two selective counters are introduced to count from 0 to 5 and from 2 to 5.Simulations were performed using QCADesigner and QCAPro tools in coherence vector engine mode.The proposed circuits are compared with related designs in terms of delay,cell numbers,area,and leakage power.
基金Project supported by the University Grants Commission of India(No.41-631/2012(S.R.))
文摘Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro- posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility ofQCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless cation architecture such as nano-transmitters and nano-receivers
文摘Reversible logic has recently gained significant interest due to its inherent ability to reduce energy dissipation,which is the primary need for low-power digital circuits.One of the newest areas of relevant study is reversible logic,which has applications in many areas,including nanotechnology,DNA computing,quantum computing,fault tolerance,and low-power complementary metal-oxide-semiconductor(CMOS).An electrical circuit is classified as reversible if it has an equal number of inputs and outputs,and a one-to-one relationship.A reversible circuit is conservative if the EXOR of the inputs and the EXOR of the outputs are equivalent.In addition,quantum-dot cellular automata(QCA)is one of the state-of-the-art approaches that can be used as an alternative to traditional technologies.Hence,we propose an efficient conservative gate with low power demand and high speed in this paper.First,we present a reversible gate called ANG(Ahmadpour Navimipour Gate).Then,two non-resistant QCA ANG and reversible fault-tolerant ANG structures are implemented in QCA technology.The suggested reversible gate is realized through the Miller algorithm.Subsequently,reversible fault-tolerant ANG is implemented by the 2DW clocking scheme.Furthermore,the power consumption of the suggested ANG is assessed under different energy ranges(0.5Ek,1.0Ek,and 1.5Ek).Simulations of the structures and analysis of their power consumption are performed using QCADesigner 2.0.03 and QCAPro software.The proposed gate shows great improvements compared to recent designs.
基金supported the National Natural Science Foundation of China(42071371)the National Key R&D Program of China(2018YFB0505400).
文摘Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.
文摘[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique.
基金supported by the Malaysia-Japan International Institute of Technology(MJIIT),Universiti Teknologi Malaysia.
文摘Kuala Lumpur of Malaysia,as a tropical city,has experienced a notable decline in its critical urban green infrastructure(UGI)due to rapid urbanization and haphazard development.The decrease of UGI,especially natural forest and artificial forest,may reduce the diversity of ecosystem services and the ability of Kuala Lumpur to build resilience in the future.This study analyzed land use and land cover(LULC)and UGI changes in Kuala Lumpur based on Landsat satellite images in 1990,2005,and 2021and employed the overall accuracy and Kappa coefficient to assess classification accuracy.LULC was categorized into six main types:natural forest,artificial forest,grassland,water body,bare ground,and built-up area.Satellite images in 1990,2005,and 2021 showed the remarkable overall accuracy values of 91.06%,96.67%,and 98.28%,respectively,along with the significant Kappa coefficient values of 0.8997,0.9626,and 0.9512,respectively.Then,this study utilized Cellular Automata and Markov Chain model to analyze the transition of different LULC types during 1990-2005 and 1990-2021 and predict LULC types in 2050.The results showed that natural forest decreased from 15.22%to 8.20%and artificial forest reduced from 18.51%to 15.16%during 1990-2021.Reductions in natural forest and artificial forest led to alterations in urban surface water dynamics,increasing the risk of urban floods.However,grassland showed a significant increase from 7.80%to 24.30%during 1990-2021.Meanwhile,bare ground increased from 27.16%to 31.56%and built-up area increased from 30.45%to 39.90%during 1990-2005.In 2021,built-up area decreased to 35.10%and bare ground decreased to 13.08%,indicating a consistent dominance of built-up area in the central parts of Kuala Lumpur.This study highlights the importance of integrating past,current,and future LULC changes to improve urban ecosystem services in the city.
文摘To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.
基金supported by the National Natural Science Foundation of China(Grant No.50478088)the Natural Science Foundation of Hebei Province,China(Grant No.E2015202266)
文摘The aim of this work is to investigate the influence of rainy weather on traffic accidents of a freeway. The micro-scale driving behaviors in rainy weather and possible vehicle rear-end and sideslip accidents are analyzed. An improved CA model of two lanes one-way freeway is presented, where some vehicle accidents will occur when the necessary conditions are simultaneously satisfied. The characteristics of traffic flow under different rainfall intensities are discussed and the accident probabilities are analyzed via the simulation experiments by using variable speed limit (VSL) and incoming flow control. The results indicate that the measures are effective especially during heavy rainstorms or short-time heavy rainfall. According to different rainfall intensities, an appropriate strategy should be adopted in order to reduce the probability of vehicle accidents and enhance traffic flux as well.