Microquasars are the compact objects generally including accreting black holes which produce relativistic jets.The physical mechanisms of jet launching,collimation,and acceleration are poorly understood.Microquasars s...Microquasars are the compact objects generally including accreting black holes which produce relativistic jets.The physical mechanisms of jet launching,collimation,and acceleration are poorly understood.Microquasars show strong variability in multi-wavelength observations.In x-rays,the sources show the fast variation features down to millisecond time scales,with the prominent quasiperiodic oscillations(QPOs)around 0.1 Hz–tens of Hz in light curves,however,physical origin of QPOs is still uncertain.FAST as the largest radio telescope provides the opportunity to study fast variability of both radio flux and polarization in microquasars.In the FAST observations from 2020–2022,we reported the first evidence of radio subsecond quasi-periodic oscillations of GRS 1915+105,providing the direct link between QPOs and the dynamics of relativistic jets.These QPOs with the centroid frequency around 5 Hz are transient,accompanied with strong evolution of the spectral index.Combined with multiwavelength observations,we discuss the possible physical models to produce radio QPOs in BH systems:the helical motion of jet knots or precession of the jet base.In near future,high time resolution radio monitoring of microquasars based on FAST is expected to discover more new phenomena in black hole systems,which will be important for understanding the physics in strong gravity.展开更多
This paper explores the correlation between the fractional variation of the ionizing continuum and CⅣbroad absorption lines(BALs)with different ionization levels.Our results reveal anti-correlations between fractiona...This paper explores the correlation between the fractional variation of the ionizing continuum and CⅣbroad absorption lines(BALs)with different ionization levels.Our results reveal anti-correlations between fractional variation of the continuum and fractional equivalency width(EW)variation of the CⅣB ALs without AlⅢB AL/mini-BALs at corresponding velocities,providing evidence for the widespread influence of the ionizing continuum variability on the variation of HiBALs.Conversely,for CⅣBALs accompanied by AlⅢBAL/mini-BALs(LoBAL groups),no significant correction is detected.The absence of such a correlation does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability,but rather suggests the influence of B AL saturation to some extent.This saturation effect is reflected in the distribution of the fractional EW variation,where the CⅣBAL group accompanied by AlⅢBAL has a smaller standard deviation for the best-fitting Gaussian component than the two BAL groups without AlⅢB AL.However,the distribution of fractional variation of their continuum does not show any significant difference.Besides the saturation influence,another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change,such as clouds transiting across the line of sight.展开更多
We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope s...We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.展开更多
I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse ...I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse Interstellar Bands(DIBs) in Section 6;on construction of the 3.5 m telescope at Apache Point Observatory(APO)in Section 7;on work on the Sloan Digital Sky Survey(SDSS) in Section 8;on work in public education in Chicago in Section 9;and on my travels in Section 10. My main science research is of an observational nature,concerning Galactic and intergalactic interstellar gas. Highlights for me included my work on the orbiting telescope Copernicus, including the discovery of interstellar deuterium;early observations of absorption associated with fivetimes ionized oxygen;and discoveries concerning the phases of gas in the local interstellar medium, based on previously unobservable interstellar UV spectral lines. With other instruments and collaborations, I extended interstellar UV studies to the intergalactic cool gas using quasi-stellar object QSO absorption lines redshifted to the optical part of the spectrum;provided a better definition of the emission and morphological character of the source of absorption lines in QSO spectra;and pursued the identification of the unidentified DIBs. For several of these topics, extensive collaborations with many scientists were essential over many years. The conclusions developed slowly, as I moved from being a graduate student at Chicago, to a research scientist position at Princeton and then to a faculty position at Chicago. At each stage of life, I was exposed to new technologies adaptable to my science and to subsequent projects. From high school days, I encountered several management opportunities which were formative. I have been extremely fortunate both in scientific mentors I had and in experimental opportunities I encountered.展开更多
We investigate the relationship between the variability of broad absorption lines(BALs)or narrow absorption lines(NALs)and that of continuum using a data set of two-epoch SDSS spectra containing 134 C IV NAL-BAL pairs...We investigate the relationship between the variability of broad absorption lines(BALs)or narrow absorption lines(NALs)and that of continuum using a data set of two-epoch SDSS spectra containing 134 C IV NAL-BAL pairs.Our analysis reveals an anti-correlation between the fractional equivalent width(EW)variations in NALs(or BALs)and the fractional flux variations of the continuum,with Spearman rank correlation coefficients of r=-0.47(p=1E-08)and r=-0.58(p=1E-13),respectively.In addition,we find a positive correlation between the fractional EW variations in NALs and BALs(r=0.72,p=1E-22),and derive a regression equation ΔEW_(NAL)/<EW_(NAL)>=0.803ΔEW_(BAL)/<EW_(BAL)>+0.008,with an intrinsic scatter of 0.14.These results suggest that the variability in the ionizing continuum may play a significant role in the observed changes in C IV NALs and BALs,supporting the idea of photoionization-driven variability.The co-variability between C IV NALs and BALs may imply that they originate from outflows with similar physical conditions.展开更多
With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic object...With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.展开更多
Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,c...Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.展开更多
We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sou...We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.展开更多
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi...The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).展开更多
We combine K-nearest neighbors(KNN)with a genetic algorithm(GA)for photometric redshift estimation of quasars,short for GeneticKNN,which is a weighted KNN approach supported by a GA.This approach has two improvements ...We combine K-nearest neighbors(KNN)with a genetic algorithm(GA)for photometric redshift estimation of quasars,short for GeneticKNN,which is a weighted KNN approach supported by a GA.This approach has two improvements compared to KNN:one is the feature weighted by GA;the other is that the predicted redshift is not the redshift average of K neighbors but the weighted average of median and mean of redshifts for K neighbors,i.e.p×zmedian+(1-p)×zmean.Based on the SDSS and SDSS-WISE quasar samples,we explore the performance of GeneticKNN for photometric redshift estimation,comparing with the other six traditional machine learning methods,i.e.the least absolute shrinkage and selection operator(LASSO),support vector regression(SVR),multi-layer perceptrons(MLP),XGBoost,KNN and random forest.KNN and random forest show their superiority.Considering the easy implementation of KNN,we make improvement on KNN as GeneticKNN and apply GeneticKNN on photometric redshift estimation of quasars.Finally the performance of GeneticKNN is better than that of LASSO,SVR,MLP,XGBoost,KNN and random forest for all cases.Moreover the accuracy is better with the additional WISE magnitudes for the same method.展开更多
We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observation...We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be miss- ing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed.展开更多
We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where ...We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5° central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars.展开更多
Based on the SDSS and SDSS-WISE quasar datasets, we put forward two schemes to estimate the photometric redshifts of quasars. Our schemes are based on the idea that the samples are firstly classified into subsamples b...Based on the SDSS and SDSS-WISE quasar datasets, we put forward two schemes to estimate the photometric redshifts of quasars. Our schemes are based on the idea that the samples are firstly classified into subsamples by a classifier and then a photometric redshift estimation of different subsamples is performed by a regressor. Random Forest is adopted as the core algorithm of the classifiers, while Random Forest and k NN are applied as the key algorithms of regressors. The samples are divided into two subsamples and four subsamples, depending on the redshift distribution. The performances based on different samples, different algorithms and different schemes are compared. The experimental results indicate that the accuracy of photometric redshift estimation for the two schemes generally improves to some extent compared to the original scheme in terms of the percents in |△z|1+zi< 0.1 and |△z|1+zi<0.2 and mean absolute error. Only given the running speed, k NN shows its superiority to Random Forest. The performance of Random Forest is a little better than or comparable to that of k NN with the two datasets. The accuracy based on the SDSS-WISE sample outperforms that based on the SDSS sample no matter by k NN or by Random Rorest. More information from more bands is considered and helpful to improve the accuracy of photometric redshift estimation. Evidently, it can be found that our strategy to estimate photometric redshift is applicable and may be applied to other datasets or other kinds of objects. Only talking about the percent in |△z|1+zi<0.3, there is still large room for further improvement in the photometric redshift estimation.展开更多
By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLSls, PMN J0948+0022 and 1H 0323+342) in diffe...By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLSls, PMN J0948+0022 and 1H 0323+342) in different flux stages with one-zone leptonic models, we find a universal correlation between their Doppler factors (δ) and peak luminosities (Lc) of external Compton scattering bumps. Compiling a combined sample of FSRQs and GeV NLSls, it is found that both FSRQs and GeV NLSls in different stages and in different sources follow the same δ-Lc correlation well. This indicates that the variations of observed luminosities may be essentially due to the Doppler boosting effect. The universal δ-Lo relation between FSRQs and GeV NLS 1 s in different stages may be further evidence that the particle acceleration and radiation mechanisms for the two kinds of sources are similar. In addition, by replacing Lc with the observed luminosity in the Fermi/LAT band (LLAT), this correlation holds and it may serve as an empirical indicator of δ. We estimate the δ values with LLAT for 484 FSRQs in the Fermi/LAT Catalog and they range from 3 to 41, with a median of 16, which are statistically consistent with the values derived by other methods.展开更多
We investigate the MBH-σ* relation for radio-loud quasars with redshifl z 〈 0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS). The sample consists of 3772 quasars with better models of the H/4 and [O ...We investigate the MBH-σ* relation for radio-loud quasars with redshifl z 〈 0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS). The sample consists of 3772 quasars with better models of the H/4 and [O Ⅲ] lines and available radio luminosity, including 306 radio-loud quasars, 3466 radio-quiet quasars with measured radio luminosity or upper-limit of radio luminosity (181 radio-quiet quasars with measured radio luminosity). The virial supermassive black hole mass (MBH) is calculated from the broad Hβline, and the host stellar velocity dispersion (σ*) is traced by the core [O Ⅲ] gaseous velocity dispersion. The radio luminosity and radio loudness are derived from the FIRST catalog. Our results are as follows: (1) For radio-quiet quasars, we confirm that there is no obvious deviation from the MBH-σ* relation defined for inactive galaxies when the uncertainties in ~IBH and the luminosity bias are concerned. (2) We find that the radio-loud quasars deviate more from the MBH-σ* relation than do the radio-quiet quasars. This deviation is only partly due to a possible cosmological evolution of the MBH-σ* relation and the luminosity bias. (3) The radio luminosity is proportional to MBH1.28+0.23-0.16(LBol/LEdd) ^1.29+0.31-0.24 for radio-quiet quasars and to -MBH3.10+0.60-0.70(LBol/LEdd)^4.18+1.40-1.10 - for radio-loud quasars. The weaker dependence of the radio luminosity on the mass and the Eddington ratio for radio-loud quasars shows that other physical effects would account for their radio luminosities, such as the spin of the black hole.展开更多
Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and...Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4 m telescope in February, 2012. These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J K/i Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z > 3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z > 4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.展开更多
The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an u...The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).展开更多
We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the varia...We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.展开更多
We present a study of the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS,FIRST catalogs and XMM-Newton archives.A sample of radio-quiet SDSS quasars without FIRST...We present a study of the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS,FIRST catalogs and XMM-Newton archives.A sample of radio-quiet SDSS quasars without FIRST radio detection is also assembled for comparison.We construct the optical and X-ray composite spectra normalized at rest frame 4215 A(or 2200 A)for both radio-loud quasars(RLQs)and radio-quiet quasars(RQQs)at z≤3.2,with matched X-ray completeness of 19%,redshift and optical luminosity.While the optical composite spectrum of RLQs is similar to that of RQQs,we find that RLQs have a higher X-ray composite spectrum than RQQs,consistent with previous studies in the literature.By dividing the radio-detected quasars into radio loudness bins,we find the X-ray composite spectra are generally higher with increasing radio loudness.Moreover,a significant correlation is found between the optical-to-X-ray spectral index and radio loudness,and there is a unified multi-correlation between the radio and X-ray luminosities and radio loudness in radio-detected quasars.These results could be possibly explained with the corona-jet model,in which the corona and jet are directly related.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12133007)the National Key Research and Development Program of China(Grant Nos.2021YFA0718503 and 2023YFA1607901)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS。
文摘Microquasars are the compact objects generally including accreting black holes which produce relativistic jets.The physical mechanisms of jet launching,collimation,and acceleration are poorly understood.Microquasars show strong variability in multi-wavelength observations.In x-rays,the sources show the fast variation features down to millisecond time scales,with the prominent quasiperiodic oscillations(QPOs)around 0.1 Hz–tens of Hz in light curves,however,physical origin of QPOs is still uncertain.FAST as the largest radio telescope provides the opportunity to study fast variability of both radio flux and polarization in microquasars.In the FAST observations from 2020–2022,we reported the first evidence of radio subsecond quasi-periodic oscillations of GRS 1915+105,providing the direct link between QPOs and the dynamics of relativistic jets.These QPOs with the centroid frequency around 5 Hz are transient,accompanied with strong evolution of the spectral index.Combined with multiwavelength observations,we discuss the possible physical models to produce radio QPOs in BH systems:the helical motion of jet knots or precession of the jet base.In near future,high time resolution radio monitoring of microquasars based on FAST is expected to discover more new phenomena in black hole systems,which will be important for understanding the physics in strong gravity.
基金supported by the Guangxi Natural Science Foundation(No.2021GXNSFBA220044)the National Natural Science Foundation of China(No.11903002)the Research Project of Baise University(No.2019KN04)。
文摘This paper explores the correlation between the fractional variation of the ionizing continuum and CⅣbroad absorption lines(BALs)with different ionization levels.Our results reveal anti-correlations between fractional variation of the continuum and fractional equivalency width(EW)variation of the CⅣB ALs without AlⅢB AL/mini-BALs at corresponding velocities,providing evidence for the widespread influence of the ionizing continuum variability on the variation of HiBALs.Conversely,for CⅣBALs accompanied by AlⅢBAL/mini-BALs(LoBAL groups),no significant correction is detected.The absence of such a correlation does not rule out the possibility that variations in these low-ionization lines are caused by ionizing continuum variability,but rather suggests the influence of B AL saturation to some extent.This saturation effect is reflected in the distribution of the fractional EW variation,where the CⅣBAL group accompanied by AlⅢBAL has a smaller standard deviation for the best-fitting Gaussian component than the two BAL groups without AlⅢB AL.However,the distribution of fractional variation of their continuum does not show any significant difference.Besides the saturation influence,another potential explanation for the lack of correlations in the LoBAL groups may be the effects of other variability mechanisms besides the ionization change,such as clouds transiting across the line of sight.
基金supported by the Basic Research Program of Yunnan Province(No.202201AS070005)the National Natural Science Foundation of China(NSFC,grant No.12273033)+1 种基金the Original Innovation Program of the Chinese Academy of Sciences(E085021002)support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We report our identification of three gigaelectronvoltγ-ray sources,4FGL J0502.6+0036,4FGL J1055.9+6507,and 4FGL J1708.2+5519,as Active Galactic Nuclei(AGNs).They are listed in the latest Fermi-Large Area Telescope source catalog as unidentified ones.We find that the sources all showedγ-ray flux variations in recent years.Using different survey catalogs,we are able to find a radio source within the error circle of each source's position.Further analysis of optical sources in the fields allows us to determine the optical counterparts,which showed similar variation patterns to those seen inγ-rays.The optical counterparts have reported redshifts of 0.6,1.5,and 2.3,respectively,estimated from photometric measurements.In addition,we also obtain an X-ray spectrum of 4FGL J0502.6+0036 and a flux upper limit on the X-ray emission of 4FGL J1055.9+6507 by analyzing the archival data.The broadband spectral energy distributions of the three sources from radio toγ-rays are constructed.Comparing mainly theγ-ray properties of the three sources with those of different sub-classes of AGNs,we tentatively identify them as blazars.Followup optical spectroscopy is highly warranted for obtaining their spectral features and thus verifying the identification.
文摘I reminisce on my early life in Section 1;on my education in Sections 2 and 3;on the years at Princeton as a research astronomer in Section 4;on the years on the faculty at Chicago in Section 5;on research on Diffuse Interstellar Bands(DIBs) in Section 6;on construction of the 3.5 m telescope at Apache Point Observatory(APO)in Section 7;on work on the Sloan Digital Sky Survey(SDSS) in Section 8;on work in public education in Chicago in Section 9;and on my travels in Section 10. My main science research is of an observational nature,concerning Galactic and intergalactic interstellar gas. Highlights for me included my work on the orbiting telescope Copernicus, including the discovery of interstellar deuterium;early observations of absorption associated with fivetimes ionized oxygen;and discoveries concerning the phases of gas in the local interstellar medium, based on previously unobservable interstellar UV spectral lines. With other instruments and collaborations, I extended interstellar UV studies to the intergalactic cool gas using quasi-stellar object QSO absorption lines redshifted to the optical part of the spectrum;provided a better definition of the emission and morphological character of the source of absorption lines in QSO spectra;and pursued the identification of the unidentified DIBs. For several of these topics, extensive collaborations with many scientists were essential over many years. The conclusions developed slowly, as I moved from being a graduate student at Chicago, to a research scientist position at Princeton and then to a faculty position at Chicago. At each stage of life, I was exposed to new technologies adaptable to my science and to subsequent projects. From high school days, I encountered several management opportunities which were formative. I have been extremely fortunate both in scientific mentors I had and in experimental opportunities I encountered.
基金supported by the Guangxi Natural Science Foundation(No.2021GXNSFBA220044)the National Natural Science Foundation of China(No.11903002)the Research Project of Baise University(No.2019KN04)。
文摘We investigate the relationship between the variability of broad absorption lines(BALs)or narrow absorption lines(NALs)and that of continuum using a data set of two-epoch SDSS spectra containing 134 C IV NAL-BAL pairs.Our analysis reveals an anti-correlation between the fractional equivalent width(EW)variations in NALs(or BALs)and the fractional flux variations of the continuum,with Spearman rank correlation coefficients of r=-0.47(p=1E-08)and r=-0.58(p=1E-13),respectively.In addition,we find a positive correlation between the fractional EW variations in NALs and BALs(r=0.72,p=1E-22),and derive a regression equation ΔEW_(NAL)/<EW_(NAL)>=0.803ΔEW_(BAL)/<EW_(BAL)>+0.008,with an intrinsic scatter of 0.14.These results suggest that the variability in the ionizing continuum may play a significant role in the observed changes in C IV NALs and BALs,supporting the idea of photoionization-driven variability.The co-variability between C IV NALs and BALs may imply that they originate from outflows with similar physical conditions.
文摘With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.12075246)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities(grant No.E2EG6602X2 and grant No.E2ET0209X2)supported in part by the Natural Science Foundation of Henan Province and Zhengzhou University(grant Nos.242300420231,JC23149007,35220136)the China Postdoctoral Science Foundation(grant No.2021M692942)the NSFC(grant No.11905224)the NSFC(grant No,12147103)supported by the scientific research starting grants from University of Chinese Academy of Sciences(grant No.118900M061)。
文摘Recently,observational hints for supermassive black holes have been accumulating,prompting the question:Can primordial black holes(PBHs)be supermassive,particularly with masses M■10^(9)M_(⊙)?A supercritical bubble,containing an inflating baby universe,that nucleated during inflation can evolve into a PBH in our observable universe.We find that when the inflaton slowly transitions past a neighboring vacuum,the nucleation rate of supercritical bubbles inevitably peaks,leading to a mass distribution of multiverse PBHs with a peak mass up to M■10^(11)M_(⊙).Thus,our mechanism naturally provides a primordial origin for supermassive black holes.
基金supported by the National Science Foundation under Grant No.AST-2034437 and a collaboration including Caltech,IPACsupported by the Basic Research Program of Yunnan Province(No.202201AS070005)+2 种基金the National Natural Science Foundation of China(NSFC,grant No.12273033)the Original Innovation Program of the Chinese Academy of Sciences(E085021002)the support of the science research program for graduate students of Yunnan University(KC-23234629)。
文摘We analyze the optical light curve data,obtained with the Zwicky Transient Facility(ZTF)survey,for 47 γ-ray blazars monitored by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope(Fermi).These 47sources are selected because they are among the Fermi blazars with the largest optical variations in the ZTF data.Two color-magnitude variation patterns are seen in them,with one being redder-to-stable-when-brighter(RSWB;in 31 sources)and the other being stable when brighter(in 16 sources).The patterns fit with the results recently reported in several similar studies with different data.Moreover,we find that the colors in the stable state of the sources share similar values,for which(after being corrected for the Galactic extinction)most sources are in a range of 0.4–0.55.This feature could be intrinsic and may be applied in,for example,study of the intragalactic medium.We also determine the turning points for the sources showing the RSWB pattern,after which the color changes saturate and become stable.We find a correlation between optical fluxes and γ-ray fluxes at the turning points.The physical implications of the correlation remain to be investigated,probably better with a sample of high-qualityγ-ray flux measurements.
文摘The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).
基金the National Key R&D Program of China(Grant No.2018YFB 1702703)funded by the National Natural Science Foundation of China(Grant Nos.11873066,U1531122 and U1731109)+3 种基金Funding for the Sloan Digital Sky Survey(SDSS)Ⅳhas been provided by the Alfred P.Sloan Foundationthe U.S.Department of Energy Office of Science,and the Participating Institutionssupport and resources from the Center for High-Performance Computing at the University of UtahThe Wide-field Infrared Survey Explorer(WISE)is a joint project of the University of California,Los Angeles,and the Jet Propulsion Laboratory/California Institute of Technology,funded by the National Aeronautics and Space Administration。
文摘We combine K-nearest neighbors(KNN)with a genetic algorithm(GA)for photometric redshift estimation of quasars,short for GeneticKNN,which is a weighted KNN approach supported by a GA.This approach has two improvements compared to KNN:one is the feature weighted by GA;the other is that the predicted redshift is not the redshift average of K neighbors but the weighted average of median and mean of redshifts for K neighbors,i.e.p×zmedian+(1-p)×zmean.Based on the SDSS and SDSS-WISE quasar samples,we explore the performance of GeneticKNN for photometric redshift estimation,comparing with the other six traditional machine learning methods,i.e.the least absolute shrinkage and selection operator(LASSO),support vector regression(SVR),multi-layer perceptrons(MLP),XGBoost,KNN and random forest.KNN and random forest show their superiority.Considering the easy implementation of KNN,we make improvement on KNN as GeneticKNN and apply GeneticKNN on photometric redshift estimation of quasars.Finally the performance of GeneticKNN is better than that of LASSO,SVR,MLP,XGBoost,KNN and random forest for all cases.Moreover the accuracy is better with the additional WISE magnitudes for the same method.
基金supported by the National Natural Science Foundation of China (Grant No.10525313)the National Key Basic Research Science Foundation of China (2007CB815405)The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST,now called the Guoshoujing Telescope) is a National Major Scientific Project built by the Chinese Academy of Sciences
文摘We report the discovery of eight new quasars in one extragalactic field (a five-degree field centered at RA=08^h58^m08.2^s, Dec=01°32′29.7″) with the Guoshoujing Telescope (LAMOST) commissioning observations made on 2009 December 18. These quasars, with i magnitudes from 16.44 to 19.34 and redshifts from 0.898 to 2.773, were not identified in the SDSS spectroscopic survey, though six of them with redshifts less than 2.5 were selected as quasar targets in SDSS. Except for one source without near-IR Y-band data, seven of these eight new quasars satisfy a newly proposed quasar selection criterion involving both near-IR and optical colors. Two of them were found in the 'redshift desert' for quasars (z from 2.2 to 3), indicating that the new criterion is efficient for uncovering missing quasars with similar optical colors to stars. Although LAMOST encountered some problems during the commissioning observations, we were still able to identify 38 other known SDSS quasars in this field, with i magnitudes from 16.24 to 19.10 and redshifts from 0.297 to 4.512. Our identifications imply that a substantial fraction of quasars may be miss- ing in previous quasar surveys. The implication of our results to the future LAMOST quasar survey is discussed.
基金The Guoshoujing Telescope(GSJT)is a National Major Scientific Project built by the Chinese Academy of SciencesFunding for the project has been provided by the National Development and Reform Commission
文摘We present preliminary analyses of spectra of quasar candidates in two Guoshoujing Telescope (GSJT, formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope - LAMOST) test fields near M 31 where one is close to the optical center of the disk and the other is towards the northeastern outskirts of the halo, obtained during the early stage of the GSJT commissioning in the last season of 2009. Both fields contain background low-redshift quasar candidates selected from the SDSS photometry. In total, 14 new quasars with redshifts up to 2 and i magnitudes between 16.7 and 19.2, are discovered, including 7 within the 2.5° central region of M 31. We briefly discuss the potential applications of these newly discovered bright quasars.
基金funded by the 973 Program (2014CB845700)the National Natural Science Foundation of China (Grant Nos. 11873066 and U1731109)
文摘Based on the SDSS and SDSS-WISE quasar datasets, we put forward two schemes to estimate the photometric redshifts of quasars. Our schemes are based on the idea that the samples are firstly classified into subsamples by a classifier and then a photometric redshift estimation of different subsamples is performed by a regressor. Random Forest is adopted as the core algorithm of the classifiers, while Random Forest and k NN are applied as the key algorithms of regressors. The samples are divided into two subsamples and four subsamples, depending on the redshift distribution. The performances based on different samples, different algorithms and different schemes are compared. The experimental results indicate that the accuracy of photometric redshift estimation for the two schemes generally improves to some extent compared to the original scheme in terms of the percents in |△z|1+zi< 0.1 and |△z|1+zi<0.2 and mean absolute error. Only given the running speed, k NN shows its superiority to Random Forest. The performance of Random Forest is a little better than or comparable to that of k NN with the two datasets. The accuracy based on the SDSS-WISE sample outperforms that based on the SDSS sample no matter by k NN or by Random Rorest. More information from more bands is considered and helpful to improve the accuracy of photometric redshift estimation. Evidently, it can be found that our strategy to estimate photometric redshift is applicable and may be applied to other datasets or other kinds of objects. Only talking about the percent in |△z|1+zi<0.3, there is still large room for further improvement in the photometric redshift estimation.
基金supported by the National Basic Research Program of China (973 Program) (grant 2014CB845800)the National Natural Science Foundation of China (grants 11573034, 11533003, 11373036 and 11133002)+1 种基金the Strategic Priority Research Program “The Emergence of Cosmological Structures” of the Chinese Academy of Sciences (grant XDB09000000)the Guangxi Science Foundation (2013GXNSFFA019001)
文摘By modeling the broadband spectral energy distributions (SEDs) of a typical flat spectrum radio quasar (FSRQ, 3C 279) and two GeV narrow-line Seyfert 1 galaxies (NLSls, PMN J0948+0022 and 1H 0323+342) in different flux stages with one-zone leptonic models, we find a universal correlation between their Doppler factors (δ) and peak luminosities (Lc) of external Compton scattering bumps. Compiling a combined sample of FSRQs and GeV NLSls, it is found that both FSRQs and GeV NLSls in different stages and in different sources follow the same δ-Lc correlation well. This indicates that the variations of observed luminosities may be essentially due to the Doppler boosting effect. The universal δ-Lo relation between FSRQs and GeV NLS 1 s in different stages may be further evidence that the particle acceleration and radiation mechanisms for the two kinds of sources are similar. In addition, by replacing Lc with the observed luminosity in the Fermi/LAT band (LLAT), this correlation holds and it may serve as an empirical indicator of δ. We estimate the δ values with LLAT for 484 FSRQs in the Fermi/LAT Catalog and they range from 3 to 41, with a median of 16, which are statistically consistent with the values derived by other methods.
基金the National Natural Science Foundation of China
文摘We investigate the MBH-σ* relation for radio-loud quasars with redshifl z 〈 0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS). The sample consists of 3772 quasars with better models of the H/4 and [O Ⅲ] lines and available radio luminosity, including 306 radio-loud quasars, 3466 radio-quiet quasars with measured radio luminosity or upper-limit of radio luminosity (181 radio-quiet quasars with measured radio luminosity). The virial supermassive black hole mass (MBH) is calculated from the broad Hβline, and the host stellar velocity dispersion (σ*) is traced by the core [O Ⅲ] gaseous velocity dispersion. The radio luminosity and radio loudness are derived from the FIRST catalog. Our results are as follows: (1) For radio-quiet quasars, we confirm that there is no obvious deviation from the MBH-σ* relation defined for inactive galaxies when the uncertainties in ~IBH and the luminosity bias are concerned. (2) We find that the radio-loud quasars deviate more from the MBH-σ* relation than do the radio-quiet quasars. This deviation is only partly due to a possible cosmological evolution of the MBH-σ* relation and the luminosity bias. (3) The radio luminosity is proportional to MBH1.28+0.23-0.16(LBol/LEdd) ^1.29+0.31-0.24 for radio-quiet quasars and to -MBH3.10+0.60-0.70(LBol/LEdd)^4.18+1.40-1.10 - for radio-loud quasars. The weaker dependence of the radio luminosity on the mass and the Eddington ratio for radio-loud quasars shows that other physical effects would account for their radio luminosities, such as the spin of the black hole.
基金the National Natural Science Foundation of China (Grant No. 11033001)
文摘Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with i-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from spectroscopy with the Yunnan Faint Object Spectrograph and Camera (YFOSC) at the Lijiang 2.4 m telescope in February, 2012. These quasars are in the list of z > 3.6 quasar candidates selected by using our proposed J K/i Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z > 3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z > 4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61272272 and U1531122)the Natural Science Foundation of Hubei province (Grant2015CFA058)+1 种基金the National Key Basic Research Program of China (2014CB845700)the NSFC-Texas A&M University Joint Research Program (No.11411120219)
文摘The massive photometric data collected from multiple large-scale sky surveys offer significant opportunities for measuring distances of celestial objects by photometric redshifts. However, catastrophic failure is an unsolved problem with a long history and it still exists in the current photometric redshift estimation approaches (such as the k-nearest neighbor (KNN) algorithm). In this paper, we propose a novel two-stage approach by integration of KNN and support vector machine (SVM) methods together. In the first stage, we apply the KNN algorithm to photometric data and estimate their corresponding Zphot. Our analysis has found two dense regions with catastrophic failure, one in the range of Zphot E [0.3, 1.2] and the other in the range of Zphot E [1.2, 2.1]. In the second stage, we map the photometric input pattern of points falling into the two ranges from their original attribute space into a high dimensional feature space by using a Gaussian kernel function from an SVM. In the high dimensional feature space, many outliers resulting from catastrophic failure by simple Euclidean distance computation in KNN can be identified by a classification hyperplane of SVM and can be further corrected. Experimental results based on the Sloan Digital Sky Survey (SDSS) quasar data show that the two-stage fusion approach can significantly mitigate catastrophic failure and improve the estimation accuracy of photometric redshifts of quasars. The percents in different /△z/ ranges and root mean square (rms) error by the integrated method are 83.47%, 89.83%, 90.90% and 0.192, respectively, compared to the results by KNN (71.96%, 83.78%, 89.73% and 0.204).
基金funded by the National Natural Science Foundation of China(NSFC)Nos.11803029,11833006 and 12173034the National Training Program of Innovation and Entrepreneurship for Undergraduates of China No.201910673001,Yunnan University grant C176220100007+8 种基金the National Key R&D Program of China No.2019YFA0405500the science research grants from the China Manned Space Project with Nos.CMS-CSST-2021-A09,CMS-CSST-2021-A08 and CMS-CSST2021-B03Funding for SDSS-Ⅲhas been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Science Foundation,and the U.S.Department of Energy Office of ScienceThe national facility capability for Sky Mapper has been funded through ARC LIEF grant LE130100104 from the Australian Research CouncilDevelopment and support of the Sky Mapper node of the ASVO has been funded in part by Astronomy Australia Limited(AAL)the Australian Government through the Commonwealth’s Education Investment Fund(EIF)National Collaborative Research Infrastructure Strategy(NCRIS)the National e Research Collaboration Tools and Resources(Ne CTAR)the Australian National Data Service Projects(ANDS)。
文摘We have investigated the feasibilities and accuracies of the identifications of RR Lyrae stars and quasars from the simulated data of the Multi-channel Photometric Survey Telescope(Mephisto)W Survey.Based on the variable sources light curve libraries from the Sloan Digital Sky Survey(SDSS)Stripe 82 data and the observation history simulation from the Mephisto-W Survey Scheduler,we have simulated the uvgriz multi-band light curves of RR Lyrae stars,quasars and other variable sources for the first year observation of Mephisto W Survey.We have applied the ensemble machine learning algorithm Random Forest Classifier(RFC)to identify RR Lyrae stars and quasars,respectively.We build training and test samples and extract~150 features from the simulated light curves and train two RFCs respectively for the RR Lyrae star and quasar classification.We find that,our RFCs are able to select the RR Lyrae stars and quasars with remarkably high precision and completeness,with purity=95.4%and completeness=96.9%for the RR Lyrae RFC and purity=91.4%and completeness=90.2%for the quasar RFC.We have also derived relative importances of the extracted features utilized to classify RR Lyrae stars and quasars.
基金the National Natural Science Foundation of China(Grant Nos.11873073,U1531245,11773056 and U1831138)based on results from the enhanced XMMNewton spectral-fit database,an ESA PRODEX funded project,based in turn on observations obtained with XMMNewton,an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA+2 种基金Funding for SDSS-Ⅲhas been provided by the Alfred P.Sloan Foundationthe National Science Foundationthe U.S.Department of Energy Office of Science。
文摘We present a study of the X-ray emission for a sample of radio-detected quasars constructed from the cross-matches between SDSS,FIRST catalogs and XMM-Newton archives.A sample of radio-quiet SDSS quasars without FIRST radio detection is also assembled for comparison.We construct the optical and X-ray composite spectra normalized at rest frame 4215 A(or 2200 A)for both radio-loud quasars(RLQs)and radio-quiet quasars(RQQs)at z≤3.2,with matched X-ray completeness of 19%,redshift and optical luminosity.While the optical composite spectrum of RLQs is similar to that of RQQs,we find that RLQs have a higher X-ray composite spectrum than RQQs,consistent with previous studies in the literature.By dividing the radio-detected quasars into radio loudness bins,we find the X-ray composite spectra are generally higher with increasing radio loudness.Moreover,a significant correlation is found between the optical-to-X-ray spectral index and radio loudness,and there is a unified multi-correlation between the radio and X-ray luminosities and radio loudness in radio-detected quasars.These results could be possibly explained with the corona-jet model,in which the corona and jet are directly related.