期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Discussion on applying an analytical method to optimize the anti-freeze design parameters for underground water pipelines in seasonally frozen areas 被引量:1
1
作者 Ji Chen JingYi Zhao +1 位作者 Kun Li Yu Sheng 《Research in Cold and Arid Regions》 CSCD 2016年第6期467-476,共10页
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet... Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient. 展开更多
关键词 quasi-3d method analytical method maximum frozen penetration underground water pipeline seasonally frozen area
下载PDF
Numerical investigation and modeling of sweep effects on inlet flow field of axial compressor cascades
2
作者 Jiancheng ZHANG Donghai JIN Xingmin GUI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期296-308,共13页
Swept blades are widely utilized in transonic compressors/fans and provide high load,high through-flow,high efficiency,and adequate stall margin.However,there is limited quantitative research on the mechanism of the e... Swept blades are widely utilized in transonic compressors/fans and provide high load,high through-flow,high efficiency,and adequate stall margin.However,there is limited quantitative research on the mechanism of the effect of swept blades on the flow field,resulting in a lack of direct quantitative guidance for the design and analysis of swept blades in fans/compressors.To better understand this mechanism,this study employs a reduced-dimensional force equilibrium method to analyze more than 1500 swept cascades data.Results verify that circumferential fluctuation terms are responsible for inducing radial migration in the inlet airflow field of the swept blade,resulting in variations in the incidence angle and consequently leading to changes in the characteristics of the swept blade.Thus,a combination of simple functions and machine learning is utilized to model the circumferential fluctuation terms and quantify the sweep mechanism.The prediction accuracy of the model is high,with coefficient of determination greater than 0.95 on the test set.When the model is applied in a meridional flow analysis program,the calculation accuracy of the program for the incidence angle is improved by 0.4°and 0.6°at the design and off-design conditions respectively,compensating for the program’s original deficiencies.Meanwhile,the model can also provide quantitative guidance for the design of swept blades,thereby reducing the number of design iterations and improving design efficiency. 展开更多
关键词 TURBOMACHINERY Sweep aerodynamics quasi-3d method Incidence angle Circumferential fluctuation Machine learning
原文传递
A new non-linear vortex lattice method:Applications to wing aerodynamic optimizations 被引量:7
3
作者 Oliviu Sugar Gabor Andreea Koreanschi Ruxandra Mihaela Botez 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1178-1195,共18页
This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity... This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing. 展开更多
关键词 Aerodynamic design Aerodynamic optimization Enhanced potential method Morphing wing Nonlinear vortex latticemethod quasi-3d aerodynamic method UAS optimization
原文传递
基于数字化反应堆物理计算程序SHARK的一步法输运计算方法研究
4
作者 赵晨 赵文博 +6 位作者 张宏博 王博 陈长 彭星杰 宫兆虎 曾未 李庆 《核动力工程》 EI CAS CSCD 北大核心 2023年第4期33-40,共8页
为建立基于数字化反应堆技术的新一代反应堆物理计算方法,实现数字化反应堆高保真建模、高分辨率高精度计算,基于数字化反应堆物理计算程序SHARK,开展了一步法输运计算方法研究,建立并比较了二维/一维方法及准三维特征线输运方法;基于... 为建立基于数字化反应堆技术的新一代反应堆物理计算方法,实现数字化反应堆高保真建模、高分辨率高精度计算,基于数字化反应堆物理计算程序SHARK,开展了一步法输运计算方法研究,建立并比较了二维/一维方法及准三维特征线输运方法;基于空间区域分解及粗网有限差分(CMFD)的大规模并行加速技术,实现了棒状堆芯及板状堆芯的全堆规模一步法输运计算。数值结果与蒙特卡罗程序基准解相比,特征值偏差小于100pcm(1pcm=10^(-5)),最大棒功率、板功率偏差小于3%,验证了SHARK程序一步法输运计算方法具有良好计算精度,能够适用于棒状、板状堆芯等多应用场景。 展开更多
关键词 数字化反应堆 二维/一维方法 准三维特征线方法 SHARK
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部